المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

الأفقر هم الأكثر عرضة للتغير المناخي
21-12-2015
الاستعارة
2-2-2020
آياتُ الله في خلقِ الليل والنهار
13-11-2015
تفسير سورة الزلزلة من آية (1-6)
2024-03-02
تسمم النحل بالمبيدات الكيماوية
17/10/2022
أول من أظهر الجبر في هذه الأمة معاوية
30-11-2015

Continuity-Discontinuity  
  
2182   02:36 مساءً   date: 27-4-2018
Author : Gürsoy, A. B.
Book or Source : "Functions of Several Variables and Partial Differentiation.
Page and Part : ...


Read More
Date: 11-6-2019 1139
Date: 23-4-2019 1680
Date: 13-9-2019 1251

Continuity-Discontinuity

 

 

 

 

 

Discontinuity

A discontinuity is point at which a mathematical object is discontinuous. The left figure above illustrates a discontinuity in a one-variable function while the right figure illustrates a discontinuity of a two-variable function plotted as a surface in R^3. In the latter case, the discontinuity is a branch cut along the negative real axis of the natural logarithm lnz for complex z.

Some authors refer to a discontinuity of a function as a jump, though this is rarely utilized in the literature.

Though defined identically, discontinuities of univariate functions are considerably different than those of multivariate functions. One of the main differences between these cases exists with regards to classifying the discontinuities, a caveat discussed more at length below.

In the case of a one-variable real-valued function y=f(x), there are precisely three families of discontinuities that can occur.

1. The simplest type is the so-called removable discontinuity.

2. A univariate function f may also have what's known as a jump discontinuity (not to be confused with the rarely-utilized term jump mentioned above). This discontinuity is algebraically less-trivial than a removable discontinuity but is, in some sense, still a "not terrible" discontinuity. In particular, univariate monotone functions can have at most countably many discontinuities (Royden and Fitzpatrick 2010), the worst of which can be jump discontinuities (Zakon 2004).

3. The "worst" kind of discontinuity a univariate function can possess is the so-called infinite discontinuity.

Even with this classification, the sets of discontinuity of univariate real-valued functions may be stranger than unexpected. Indeed, functions may be discontinuous at finite sets of points, at countable sets of points which may be either isolated or dense, and on uncountable proper subsets of their domain. Other functions, such as the Dirichlet function, are discontinuous everywhere. Even so, the size of the discontinuity set of a function can say a lot about its analytic properties. For example, a theorem of Lebesgue states that a bounded univariate real-valued function defined on a bounded interval is Riemann integrable if and only if it is continuous almost everywhere (Royden and Fitzpatrick 2010); similarly, the sets of discontinuities of univariate monotone real-valued functions defined on open intervals are at most countable subsets of their domain.

With functions of two or more variables, however, no simple discontinuity classification is possible. There are a number of caveats which hinder any classification of the discontinuities of multivariate functions, chief among which is the fact that multivariate functions need neither jump nor "blow up" at points of discontinuity (Lady 1998). What's more, discontinuities of several-variable functions may occur along entire curves in the plane rather than at individual points. Various examples of discontinuous behavior are shown below.

 

 

 

 

DiscontinuityInfinitePoint

The two functions above both have infinite discontinuities at the origin. The leftmost example is the function f(x,y)=1/(x^2+y^2), which has the property that each of the directional limits of f tends to +infty as (x,y)approaches (0,0). On the other hand, the rightmost function is

 g(x,y)=sin(1/(sqrt(x^2+y^2))),
(1)

a function which has also a discontinuity as (x,y)->(0,0) and for which lim_((x,y)->(0,0))g(x,y) fails to exist. The function g represents the surface obtained by revolving the function y=sin(1/x) about the y-axis.

 

 

 

 

DiscontinuityInfiniteLine

The two functions shown in the above figure are in some ways similar to the functions f=f(x,y) and g=g(x,y)described above. More precisely, the function h(x,y)=1/(x-y)^2 on the left has infinite discontinuity along the entire line y=x and the limit of h approaches +infty from both sides of that line. On the other hand, the function k(x,y)=1/(x-y) on the right has infinite discontinuity along the same line, but the limits of the values of k disagree on either side of that line.

 

 

 

 

JumpDiscontinuityMonotoneLine

The function shown above is the piecewise function

 t(x,y)={(x,x)   for x+y>1; (-5+x,-5+x)   for x+y<=1.
(2)

In particular, note that t is monotone in each of x and y separately and has jump discontinuity along the entire line x+y=1. This is in stark contrast to the univariate case, as discussed above.

 

 

 

 

DiscontinuityPinch

The function p(x,y) defined by

 p(x,y)=(2xy)/(x^2+y^2)
(3)

is shown in the figure immediately above. Like the functions f=f(x,y) and g=g(x,y) defined previously, the function p has a discontinuity at the point (0,0), though unlike those functions, the point discontinuity of p is more difficult to recognize. One way to observe and understand the discontinuity of p is by converting p to a function of the polar coordinates r and theta, the result of which is the function P=P(r,theta) having the form

 P(r,theta)=sin(2theta).
(4)

Among other things, the expression in (3) above shows that P (and hence p) is constant on all lines through the origin (Lady 1998), thereby confirming the existence of a discontinuity there. This example is also unlike the cases outlined for univariate functions due to the fact that its discontinuity is essential (i.e., it is not removable) and is neither a jump nor an infinite discontinuity.

Despite behaving very differently in terms of continuity, the sets of discontinuities of all real-valued functions in any dimension share certain properties. For example, the collection of discontinuities of such a function is always an F_sigmaset; this is due to the fact that the set of all points at which a function is continuous form a G_delta set (Royden and Fitzpatrick 2010).


REFERENCES:

Gürsoy, A. B. "Functions of Several Variables and Partial Differentiation." 2013. http://mcs156.cankaya.edu.tr/uploads/files/Functions%20of%20Several%20Variables%20and%20Partial%20Differentiation.pdf.

Johnson, D. "A Sketch of the Theory of Functions of Several Variables."http://thewaythetruthandthelife.net/index/2_background/2-1_cosmological/math/mat6/calcul10.htm.

Lady, E. L. "Discontinuities for Functions of One and Two Variables." 1998. http://www.math.hawaii.edu/~lee/calculus/Discontinuous.pdf.

Royden, H. L. and Fitzpatrick, P. M. Real Analysis. Pearson, 2010.

Zakon, E. Mathematical Analysis Volume 1. West Lafayette, IN: The Trilla Group, 2004. http://www.trillia.com/zakon-analysisI.html.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.