Read More
Date: 18-8-2018
2315
Date: 9-9-2019
2424
Date: 25-7-2019
1446
|
The study of an extension of derivatives and integrals to noninteger orders. Fractional calculus is based on the definition of the fractional integral as
where is the gamma function. From this equation, fractional derivatives can also be defined.
REFERENCES:
Butzer, P. L. and Westphal, U. "An Introduction to Fractional Calculus." Ch. 1 in Applications of Fractional Calculus in Physics (Ed. R. Hilfer). Singapore: World Scientific, pp. 1-85, 2000.
Kilbas, A. A.; Srivastava, H. M.; and Trujiilo, J. J. Theory and Applications of Fractional Differential Equations. Amsterdam, Netherlands: Elsevier, 2006.
McBride, A. C. Fractional Calculus. New York: Halsted Press, 1986.
Nishimoto, K. Fractional Calculus. New Haven, CT: University of New Haven Press, 1989.
Samko, S. G.; Kilbas, A. A.; and Marichev, O. I. Fractional Integrals and Derivatives. Yverdon, Switzerland: Gordon and Breach, 1993.
Oldham, K. B. and Spanier, J. The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. New York: Academic Press,
|
|
كل ما تود معرفته عن أهم فيتامين لسلامة الدماغ والأعصاب
|
|
|
|
|
ماذا سيحصل للأرض إذا تغير شكل نواتها؟
|
|
|
|
|
جامعة الكفيل تناقش تحضيراتها لإطلاق مؤتمرها العلمي الدولي السادس
|
|
|