تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
التحويلات الخطية العامة والمصفوفات
المؤلف:
علي جاسم التميمي
المصدر:
مقدمة في الجبر الخطي
الجزء والصفحة:
405-413
29-2-2016
13084
في هذا البند سنبين أنه إذا كانت V و W فضاءات متجهات وذات أبعاد منتهية ليس ضرورياً أن يكون Rn أو Rm، فإن أي تحويل خطي T:V⟶W يمكن اعتباره تحويل مصفوفي. إن الفكرة الأساسية هي في اختيار أساسات للفضاءات V و W والتعامل معها على أساس كونها إحداثية للمتجهات عوضاً عن المتجهات نفسها.
نفرض أن بعد v هو n وبعد w هو m وكذلك أساس V هو B وأساس W هو C . لذا لكل متجه x في V المصفوفة الإحداثية B[X] هي متجه في R" والمصفوفة الإحداثية [T(X)] ستكون متجه في Rm. الشكل أدناه يوضح هذه الأفكار.
شكل (1-1)
وإذا أكملنا الشكل المستطيل أعلاه سنحصل على تطبيق (دالة) من Rn إلى Rm والتي يمكن إثباتها بأنها تحويلة خطية. فلو افترضنا أن A هي المصفوفة العامة لهذه التحويلة، فإن:
المصفوفة A يقال لها مصفوفة T نسبة للأساسين B و C، لاحظ الشكل
شكل (1-2)
سنوضح بعد ذلك بعض استخدامات المصفوفة A في العلاقة (1)، ولكن قبل ذلك سنين كيف نكون A.
نفرض {v1, v2, … , vn} =B أساس V و {u1 , u2, …, un}=C أساس W وليكن:
بحيث تتحقق العلاقة (1) لكل x∊V بمعنى آخر نريد تحقيق هذه العلاقة لمتجهات الأساس vn, … , v2,v1 ، أي:
ملاحظة:
الأعمدة المتتالية للمصفوفة A هي مصفوفات إحداثية. لــ:
نسبة للأساس C.
لذا فإن مصفوفة T نسبة للأساسات C, B هي:
سنرمز لهذه المصفوفة بالرمز C, B[T]. لذا فإن العلاقة (3) تكتب بالشكل:
مثال(1):
الحل:
ملاحظة:
عندما V = W فإن T:V⟶W تسمى عملية خطية وفي مثل هذه الحالة B = C عند إيجاد مصفوفة T. يقال للمصفوفة T مصفوفة T نسبة إلى B وتكتب B[T] بدلاً من TB.C. إذا فرضنا أن {v1, v2, …, vn} =B إن الصيغ (4) و (5) تأخذ الصيغ الآتية
لاحظ أن العلاقتين (6) و (7) تنصان على أن مصفوفة T مضروبة في مصفوفة إحداثيات x هي مصفوفة إحداثيات T(x).
مثال (3):
مثال(4):
لاحظ أن النتيجة في الخطوة (3) هي نفسها في الخطوة (2).
الاكثر قراءة في الجبر الخطي
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
