المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

في عهد عمر
12-10-2017
تفسير سورة الشورى من آية (1-45)
2024-02-07
Monocistronic
18-3-2019
Octopine
29-5-2019
معنى التلازم وأقسامه وأنواعه
3-8-2016
Occurrence and extraction of zinc from zinc blende
10-12-2018

Raymond Woodard Brink  
  
155   09:25 صباحاً   date: 27-7-2017
Author : J M H Olmsted
Book or Source : R W Brink - An Obituary, Amer. Math. Monthly 8
Page and Part : ...


Read More
Date: 18-7-2017 126
Date: 14-7-2017 71
Date: 14-7-2017 71

Born: 4 January 1890 in Newark, New Jersey, USA

Died: 27 December 1973 in La Jolla, California, USA


Raymond Brink studied at Kansas State University, where he received a B.S. degree in 1908 and a B.S.E.E. degree in 1909. He did not continue is studies immediately by attending graduate school but undertook high school teaching for a short time. He then entered Harvard University where he was awarded his doctorate in 1916 for his thesis Some Integral Tests for the Convergence and Divergence of Infinite Series.

Following the award of his doctorate Brink studied at the CoIIège de France and the Sorbonne in Paris spending the academic year 1916-17 financed by the prestigious Sheldon Travelling Fellowship. Brink fell in love with France and he had a passion for the country for the rest of his life. On returning to the United States, he was appointed, in 1917, to the Department of Mathematics in the College of Science, Literature, and the Arts at the University of Minnesota. In the following year he married Carol Ryrie on 12 July; they had two children, David Ryrie Brink and Nora Caroline Brink.

Brink spent the academic year 1919-20 at the University of Edinburgh in Scotland where he was appointed as a lecturer in Mathematics. This led to him joining the Edinburgh Mathematical Society in December 1919. Except for two further periods of study leave spent in Paris (1924-25 and 1932-33) Brink continued to teach at the University of Minnesota. A student who studied under him in 1947 wrote:-

There were older people in the Science, Literature, and the Arts Mathematics Department who had been active at one time, but had turned their attention largely to administration, textbook writing, and teaching. These included Professor Raymond W Brink who was Chairman of the department, and had been President of the Mathematical Association of America.

For further details see Brink's American Maths Monthly obituary at THIS LINK.

Finally we give some examples of Brink's papers: A new integral test for the convergence and divergence of infinite series (1918); A new sequence of integral tests for the convergence and divergence of infinite series (1919); The May Meeting of the Minnesota Section (1927); Recent Publications: Reviews: Studies in the History of Statistical Method - With Special Reference to Certain Education Problems (1929); The May Meeting of the Minnesota Section (1930); A Simplified Integral Test for the Convergence of Infinite Series (1931); Recent Publications: Reviews: Differential Equations (1932); The Annual Meeting of the Minnesota Section (1937); and College Mathematics During Reconstruction (1944).


 

  1. J M H Olmsted, R W Brink - An Obituary, Amer. Math. Monthly 81 (8) (1974), 873-875.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.