المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24
من آداب التلاوة
2024-11-24

تأثير بعض عوامل المناخ على نمو وإزهار وإثمار أشجار الموالح
26-8-2022
أبعاد الميزة التنافسية لأنشطة الموارد البشرية
20-10-2016
Parentheticals
2023-03-29
خطيئة آدم
11-10-2014
مستحضرات المبيدات
27-9-2016
المحل في عقد المقاولة
27-8-2019

Lorna Mary Swain  
  
123   02:04 مساءً   date: 25-7-2017
Author : M D Kennedy
Book or Source : Lorna Mary Swain, J. London Math. Soc. 9
Page and Part : ...


Read More
Date: 27-7-2017 166
Date: 16-8-2017 205
Date: 27-7-2017 194

Born: 22 March 1891 in Hampstead, London, England

Died: 8 May 1936 in Cambridge, England


Lorna Swain's father was Edward Swain (born Ropsley, Lincolnshire about 1853) who was a solicitor. Her mother was Mary Isabella Victoria Swain (born at St Paul's, London about 1865).

Lorna Swain was educated at South Hampstead High School in London. From there she won a scholarship to study at Newnham College, Cambridge and she began her studies in 1910. In 1913 she graduated with a First Class honours degree in mathematics and was appointed to an assistant lecturer post at Newnham College with the start of the appointment delayed for a year to allow her to spend a year in Göttingen.

However 1914 was not the best of year to begin research in Germany. Shortly after she arrived there war broke out and she hurriedly returned to England. Her mathematical books and papers fared less well and remained interned for several years before eventually being returned.

Swain's mathematical interests were in fluid dynamics so, as Göttingen was out of the question, she went to Manchester to work with Horace Lamb. While in Manchester she published her first paper, a joint paper with Lamb. As planned, she returned to Newnham College in 1915 to take up her lecturing post. However World War I again affected her career since she now undertook war work at the Royal Aircraft Establishment.

The war work she undertook was related to her expertise in fluids, and she worked on problem of vibration of propellers of aircraft. Her work was written up jointly with H A Webb and appeared as a Report of the Advisory Committee for Aeronautics in 1919.

In 1920 Swain was appointed Director of Studies at Newnham College. With heavy teaching and administrative responsibilities she had less time to undertake research but she did publish an important work on motion through a viscous fluid in 1923 in the Proceedings of the Royal Society.

Kennedy describes her commitment to teaching and education in [1] as follows:-

It was one of her guiding principles to do everything she could to encourage the study of mathematics not only in her own College but generally among women. For this reason she was an active member of the Mathematical Association and served on their committee to investigate the teaching of applied mathematics. ... She felt that school work could foster or spoil a gift for mathematics and that it was of the first importance that girls should have good teaching. Her own work, she thought, could contribute to the supply of teachers... all her students know how carefully she arranged the work for each individual, giving extra help herself when she thought it necessary.

In 1926 Lorna Swain was promoted to College Lecturer and she then had the opportunity to give advanced courses on hydromechanics and dynamics. A years study leave in 1928-29 allowed her to spend the year at Göttingen that the war had robbed her of earlier. This was a time when she was able to undertake concentrated research and another important work On the turbulent wake behind a body of revolution was published in 1929.

Lorna Swain is described in [1] as:-

... unassuming, reserved in manner, often silent, a singularly faithful friend. Her former pupils were sure of her interest and encouragement in their careers, of a warm and sincere welcome when they visited her, of prompt and valuable advice when they consulted her.

Her death at a young age took away someone at the height of their teaching and research powers:-

Her wisdom and influence were increasing, her powers of mind were still expanding, when she was overtaken by illness and death. It would be idle to guess what more she might have done if she had lived; it is certain she contributed worthily to mathematical education and to mathematical thought.


 

Articles:

  1. M D Kennedy, Lorna Mary Swain, J. London Math. Soc. 9 (1934), 155-157.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.