تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Modules-Rings and Fields
المؤلف:
David R. Wilkins
المصدر:
Algebraic Topology
الجزء والصفحة:
81-82
1-7-2017
1607
Definition A ring consists of a set R on which are defined operations of addition and multiplication that satisfy the following properties:
• the ring is an Abelian group with respect to the operation of addition;
• the operation of multiplication on the ring is associative, and thus x(yz) = (xy)z for all elements x, y and z of the ring.
• the operations of addition and multiplication satisfy the Distributive Law, and thus x(y + z) = xy + xz and (x + y)z = xz + yz for all elements x, y and z of the ring.
Lemma 1.1 Let R be a ring. Then x0 = 0 and 0x = 0 for all elements x of R.
Proof The zero element 0 of R satisfies 0 + 0 = 0. Using the Distributive Law, we deduce that x0 + x0 = x(0 + 0) = x0 and 0x + 0x = (0 + 0)x = 0x.
Thus if we add −(x0) to both sides of the identity x0 + x0 = x0 we see that x0 = 0. Similarly if we add −(0x) to both sides of the identity 0x + 0x = 0x we see that 0x = 0.
Lemma 1.2 Let R be a ring. Then (−x)y = −(xy) and x(−y) = −(xy) for all elements x and y of R.
Proof It follows from the Distributive Law that xy+(−x)y = (x+(−x))y = 0y = 0 and xy + x(−y) = x(y + (−y)) = x0 = 0. Therefore (−x)y = −(xy) and x(−y) = −(xy).
A subset S of a ring R is said to be a subring of R if 0 ∈ S, a + b ∈ S, −a ∈ S and ab ∈ S for all a, b ∈ S.
A ring R is said to be commutative if xy = yx for all x, y ∈ R. Not every ring is commutative: an example of a non-commutative ring is provided by the ring of n × n matrices with real or complex coefficients when n > 1.
A ring R is said to be unital if it possesses a (necessarily unique) non-zero multiplicative identity element 1 satisfying 1x = x = x1 for all x ∈ R.
Definition A unital commutative ring R is said to be an integral domain if the product of any two non-zero elements of R is itself non-zero.
Definition A field consists of a set on which are defined operations of addition and multiplication that satisfy the following properties:
• the field is an Abelian group with respect to the operation of addition;
• the non-zero elements of the field constitute an Abelian group with respect to the operation of multiplication;
• the operations of addition and multiplication satisfy the Distributive Law, and thus x(y + z) = xy + xz and (x + y)z = xz + yz for all elements x, y and z of the field.
An examination of the relevant definitions shows that a unital commutative ring R is a field if and only if, given any non-zero element x of R, there exists an element x−1 of R such that xx−1 = 1. Moreover a ring R is a field if and only if the set of non-zero elements of R is an Abelian group with respect to the operation of multiplication.
Lemma 1.3 A field is an integral domain.
Proof A field is a unital commutative ring. Let x and y be non-zero elements of a field K. Then there exist elements x−1 and y−1 of K such that xx−1 = 1 and yy−1 = 1. Then xyy−1x−1 = 1. It follows that xy ≠0, since 0(y−1x−1) =0 and 1 ≠0.
The set Z of integers is an integral domain with respect to the usual operations of addition and multiplication. The sets Q, R and C of rational, real and complex numbers are fields.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
