تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Covering Maps and the Monodromy Theorem-Covering Maps
المؤلف:
David R. Wilkins
المصدر:
Algebraic Topology
الجزء والصفحة:
...
21-6-2017
1903
Definition : Let X and X˜ be topological spaces and let p: X˜ → X be a continuous map. An open subset U of X is said to be evenly covered by the map p if and only if p−1 (U) is a disjoint union of open sets of X˜ each of which is mapped homeomorphically onto U by p. The map p: X˜ → X is said to be a covering map if p: X˜ → X is surjective and in addition every point of X is contained in some open set that is evenly covered by the map p.
If p: X˜ → X is a covering map, then we say that X˜ is a covering space of X.
Example Let S1 be the unit circle in R2 . Then the map p: R → S1 defined by
p(t) = (cos 2πt,sin 2πt)
is a covering map. Indeed let n be a point of S1. Consider the open set U in S1 containing n defined by U = S1 {−n}. Now n = (cos 2πt0,sin 2πt0) for some t0 ∈ R. Then p−1 (U) is the union of the disjoint open sets Jn for all integers n, where
Jn = {t ∈ R : t0 + n −1/2 < t < t0 + n +1/2}.
Each of the open sets Jn is mapped homeomorphically onto U by the map p.
This shows that p: R → S1 is a covering map.
Example The map p: C → C {0} defined by p(z) = exp(z) is a covering map. Indeed, given any θ ∈ [−π, π] let us define
Uθ = {z ∈ C {0} : arg(−z) ≠θ}.
Then p−1 (Uθ) is the disjoint union of the open sets
{z ∈ C : |Im z − θ − 2πn| < π} ,
for all integers n, and p maps each of these open sets homeomorphically onto Uθ. Thus Uθ is evenly covered by the map p.
Example Consider the map α: (−2, 2) → S1 , where α(t) = (cos 2πt,sin 2πt) for all t ∈ (−2, 2). It can easily be shown that there is no open set U containing the point (1, 0) that is evenly covered by the map α. Indeed suppose that there were to exist such an open set U. Then there would exist some δ satisfying 0 < δ < ½ such that Uδ ⊂ U, where
Uδ = {(cos 2πt,sin 2πt) : −δ < t < δ}.
The open set Uδ would then be evenly covered by the map α. However the connected components of α−1 (Uδ) are (−2, −2 +δ), (−1−δ, −1 +δ), (−δ, δ), (1 − δ, 1 + δ) and (2 − δ, 2), and neither (−2, −2 + δ) nor (2 − δ, 2) is mapped homeomorphically onto Uδ by α.
Lemma 1.1 Let p: X˜ → X be a covering map. Then p(V ) is open in X for every open set V in X˜. In particular, a covering map p: X˜ → X is a homeomorphism if and only if it is a bijection.
Proof Let V be open in X˜, and let x ∈ p(V ). Then x = p(v) for some v ∈ V . Now there exists an open set U containing the point x which is evenly covered by the covering map p. Then p−1 (U) is a disjoint union of open sets, each of which is mapped homeomorphically onto U by the covering map p. One of these open sets contains v; let U˜ be this open set, and let Nx = p(V ∩U˜). Now Nx is open in X, since V ∩U˜ is open in U˜ and p|U˜ is a homeomorphism from U˜ to U. Also x ∈ Nx and Nx ⊂ p(V ). It follows that p(V ) is the union of the open sets Nx as x ranges over all points of p(V ), and thus p(V ) is itself an open set, as required. The result that a bijective covering map is a homeomorphism then follows directly from the fact that a continuous bijection is a homeomorphism if and only if it maps open sets to open sets.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
