تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Topological Spaces-The Lebesgue Lemma and Uniform Continuity
المؤلف:
David R. Wilkins
المصدر:
Algebraic Topology
الجزء والصفحة:
...
26-9-2016
2028
Definition Let X be a metric space with distance function d. A subset A of X is said to be bounded if there exists a non-negative real number K such that d(x, y) ≤ K for all x, y ∈ A. The smallest real number K with this property is referred to as the diameter of A, and is denoted by diam A.
(Note that diam A is the supremum of the values of d(x, y) as x and y range over all points of A.)
Lemma 1.1 (Lebesgue Lemma) Let (X, d) be a compact metric space. Let U be an open cover of X. Then there exists a positive real number δ such that every subset of X whose diameter is less than δ is contained wholly within one of the open sets belonging to the open cover U.
Proof Every point of X is contained in at least one of the open sets belonging to the open cover U. It follows from this that, for each point x of X, there exists some δx > 0 such that the open ball B(x, 2δx) of radius 2δx about the point x is contained wholly within one of the open sets belonging to the open cover U. But then the collection consisting of the open balls B(x, δx) of radius δx about the points x of X forms an open cover of the compact space X. Therefore there exists a finite set x1, x2, . . . , xr of points of X such that
B(x1, δ1) ∪ B(x2, δ2) ∪ · · · ∪ B(xr, δr) = X,
where δi = δxi
for i = 1, 2, . . . , r. Let δ > 0 be given by
δ = minimum(δ1, δ2, . . . , δr).
Suppose that A is a subset of X whose diameter is less than δ. Let u be a point of A. Then u belongs to B(xi , δi) for some integer i between 1 and r.
But then it follows that A ⊂ B(xi, 2δi), since, for each point v of A,
d(v, xi) ≤ d(v, u) + d(u, xi) < δ + δi ≤ 2δi.
But B(xi, 2δi) is contained wholly within one of the open sets belonging to the open cover U. Thus A is contained wholly within one of the open sets belonging to U, as required.
Let U be an open cover of a compact metric space X. A Lebesgue number for the open cover U is a positive real number δ such that every subset of X whose diameter is less than δ is contained wholly within one of the open sets belonging to the open cover U. The Lebesgue Lemma thus states that there exists a Lebesgue number for every open cover of a compact metric space.
Let X and Y be metric spaces with distance functions dX and dY respectively, and let f: X → Y be a function from X to Y . The function f is said to be uniformly continuous on X if and only if, given ε > 0, there exists some δ > 0 such that dY (f(x), f(x΄)) < ε for all points x and x΄ of X satisfying dX(x, x΄) < δ. (The value of δ should be independent of both x and x΄.)
Theorem 1.2 Let X and Y be metric spaces. Suppose that X is compact.
Then every continuous function from X to Y is uniformly continuous.
Proof Let dX and dY denote the distance functions for the metric spaces X and Y respectively. Let f: X → Y be a continuous function from X to Y .
We must show that f is uniformly continuous.
Let ε > 0 be given. For each y ∈ Y , define
Vy = {x ∈ X : dY (f(x), y) <1/2ε}.
Note that Vy = f -1(BY (y,1/2 ε) , where BY (y,1/2 ε) denotes the open ball of radius 1/2 ε about y in Y . Now the open ball BY (y, 1/2ε) is an open set in Y , and f is continuous. Therefore Vy is open in X for all y ∈ Y . Note that x ∈ Vf(x) for all x ∈X.
Now {Vy : y ∈ Y } is an open cover of the compact metric space X. It follows from the Lebesgue Lemma (Lemma 1.27) that there exists some δ > 0 such that every subset of X whose diameter is less than δ is a subset of some set Vy. Let x and x΄ be points of X satisfying dX(x, x΄) < δ. The diameter of the set {x, x΄} is dX(x, x΄), which is less than δ. Therefore there exists some y ∈ Y such that x ∈ Vy and x΄ ∈ Vy. But then dY (f(x), y) <1/2ε and dY (f(x΄), y) <1/2ε, and hence
dY (f(x), f(x΄)) ≤ dY (f(x), y) + dY (y, f(x΄)) < ε.
This shows that f: X → Y is uniformly continuous, as required.
Let K be a closed bounded subset of Rn . It follows that any continuous function f: K → Rk is uniformly continuous.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
