المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27


Topological Spaces-The Lebesgue Lemma and Uniform Continuity  
  
1850   02:35 مساءاً   date: 26-9-2016
Author : David R. Wilkins
Book or Source : Algebraic Topology
Page and Part : ...


Read More
Date: 12-6-2021 1283
Date: 12-6-2021 1633
Date: 9-8-2021 1057

Definition Let X be a metric space with distance function d. A subset A of X is said to be bounded if there exists a non-negative real number K such that d(x, y) ≤ K for all x, y ∈ A. The smallest real number K with this property is referred to as the diameter of A, and is denoted by diam A.

(Note that diam A is the supremum of the values of d(x, y) as x and y range over all points of A.)

Lemma 1.1 (Lebesgue Lemma) Let (X, d) be a compact metric space. Let U be an open cover of X. Then there exists a positive real number δ such that every subset of X whose diameter is less than δ is contained wholly within one of the open sets belonging to the open cover U.

Proof Every point of X is contained in at least one of the open sets belonging to the open cover U. It follows from this that, for each point x of X, there exists some δx > 0 such that the open ball B(x, 2δx) of radius 2δx about the point x is contained wholly within one of the open sets belonging to the open cover U. But then the collection consisting of the open balls B(x, δx)  of radius δx about the points x of X forms an open cover of the compact space X. Therefore there exists a finite set x1, x2, . . . , xr of points of X such that

B(x1, δ1) ∪ B(x2, δ2) ∪ · · · ∪ B(xr, δr) = X,

where δi = δxi

for i = 1, 2, . . . , r. Let δ > 0 be given by

         δ = minimum(δ1, δ2, . . . , δr).

Suppose that A is a subset of X whose diameter is less than δ. Let u be a point of A. Then u belongs to B(xi , δi) for some integer i between 1 and r.

But then it follows that A ⊂ B(xi, 2δi), since, for each point v of A,

 d(v, xi) ≤ d(v, u) + d(u, xi) < δ + δi ≤ 2δi.

But B(xi, 2δi) is contained wholly within one of the open sets belonging to the open cover U. Thus A is contained wholly within one of the open sets belonging to U, as required.

Let U be an open cover of a compact metric space X. A Lebesgue number for the open cover U is a positive real number δ such that every subset of X whose diameter is less than δ is contained wholly within one of the open sets belonging to the open cover U. The Lebesgue Lemma thus states that there exists a Lebesgue number for every open cover of a compact metric space.

Let X and Y be metric spaces with distance functions dX and dY respectively, and let f: X → Y be a function from X to Y . The function f is said to be uniformly continuous on X if and only if, given ε > 0, there exists some δ > 0 such that dY (f(x), f(x΄)) < ε for all points x and x΄ of X satisfying dX(x, x΄) < δ. (The value of δ should be independent of both x and   x΄.)

Theorem 1.2 Let X and Y be metric spaces. Suppose that X is compact.

Then every continuous function from X to Y is uniformly continuous.

 Proof Let dX and dY denote the distance functions for the metric spaces X and Y respectively. Let f: X → Y be a continuous function from X to Y .

We must show that f is uniformly continuous.

Let ε > 0 be given. For each y ∈ Y , define

            Vy = {x ∈ X : dY (f(x), y) <1/2ε}.

Note that Vy = f -1(BY (y,1/2 ε) , where BY (y,1/2 ε) denotes the open ball of radius 1/2 ε about y in Y . Now the open ball BY (y, 1/2ε) is an open set in Y , and f is continuous. Therefore Vy is open in X for all y ∈ Y . Note that x ∈ Vf(x) for all x ∈X.

Now {Vy : y ∈ Y } is an open cover of the compact metric space X. It follows from the Lebesgue Lemma (Lemma 1.27) that there exists some δ > 0 such that every subset of X whose diameter is less than δ is a subset of some set Vy. Let x and x΄ be points of X satisfying dX(x, x΄) < δ. The diameter of the set {x, x΄} is dX(x, x΄), which is less than δ.  Therefore there exists some y ∈ Y such that x ∈ Vy and x΄ ∈ Vy. But then dY (f(x), y) <1/2ε and dY (f(x΄), y) <1/2ε, and hence

                                         dY (f(x), f(x΄)) ≤ dY (f(x), y) + dY (y, f(x΄)) < ε.

This shows that f: X → Y is uniformly continuous, as required.

Let K be a closed bounded subset of Rn . It follows that any continuous function f: K → Rk is uniformly continuous.

 

 

 

 

 

 

 

 

 

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.