المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27


Louis Paul Emile Richard  
  
153   01:29 مساءاً   date: 19-7-2016
Author : J Itad
Book or Source : Biography in Dictionary of Scientific Biography
Page and Part : ...


Read More
Date: 14-7-2016 80
Date: 14-7-2016 93
Date: 17-7-2016 86

 

Born: 31 March 1795 in Rennes, France
Died: 11 March 1849 in Paris, France


Louis Richard's father was a lieutenant colonel in the artillery. Louis was the eldest of his parents' four children and his parents would certainly have expected him to follow in his father's footsteps and join the military. He was left with a physical impediment as a result of a childhood accident so he was unable to pursue the military career that both he and his parents had wished. He therefore decided to become a teacher of mathematics and so train men many of whom would indeed progress to military careers themselves.

He taught mathematics at the lycée at Douai, a town on the river Scarpe south of Lille, from 1814. While teaching at this lycée he became friendly with a student A J H Vincent, who later became a famous historian of Greek mathematics. Richard continued his friendship with Vincent after he left Douai.

In 1815 he was appointed professor at the Collège de Pontivy, being given the title of Professor of Special Mathematics in the following year. Pontivy is a town in Brittany which Napoleon had designed and used as his military base (renaming it Napoleonville). These military connections must have been to Richard's liking. In 1920 he went to Paris where he was appointed to teach mathematics at the Collège Saint-Louis. Remaining in Paris, he then taught at the famous Collège Louis-le-Grand where he was given the chair of Special Mathematics in 1822. Richard held this post for twenty-seven years until his death at the age of 53.

The Collège Louis-le-Grand was an ancient educational establishment founded in 1563. It was situated in the heart of the student area of Paris close to the Sorbonne and the Collège de France. The main function of the school was to prepare pupils for the entrance examinations to the École Polytechnique and École Normale Supérieure. It had an outstanding reputation in this function with a high success rate. Richard was an extremely talented teacher who was given the freedom to devise his own approach to getting the best educational results. Not only did he achieve excellent results from his pupils but, perhaps even more importantly, he also did an outstanding job in firing their interest in research in mathematics.

Richard perhaps attained his greatest fame as the teacher of Galois and his report on him which stated:-

This student works only in the highest realms of mathematics....

is well known. However, he also taught several other mathematicians whose biographies are included in this archive including Le Verrier, Serret and Hermite. He fully realised the significance of Galois' work and so, fifteen years after he left the college, he gave Galois' student exercises to Hermite so that a record of his school-work might be preserved. It is probably fair to say that Richard chose to give them to Hermite since in many ways he saw him as being similar to Galois. Under Richard's guidance, Hermite read papers by Euler, Gauss and Lagrange rather than work for his formal examinations, and he published two mathematics papers while a student at Louis-le-Grand.

Despite being encouraged by his friends to publish books based on the material that he taught so successfully, Richard did not wish to do so and so published nothing. This is indeed rather unfortunate since it would now be very interesting to read textbooks written by the teacher of so many world-class mathematicians.


 

  1. J Itad, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830903658.html

Articles:

  1. O Terquem, Louis Paul Emile Richard, Nouvelles annales de mathématique 8 (1849), 448-451.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.