المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

مقاومة الحامض Acid Resistance
الميتوكوندريا Mitochondria
22-2-2017
تصنيف الحـوادث المرورية لهيئة الأمم المتحدة
23-3-2021
عمر بن أبي سلمة المخزومي (ت / 83 هـ).
24-12-2015
الأمانة
14-4-2022
Anguilla
2024-04-10

al-Marrakushi ibn Al-Banna  
  
1604   02:30 صباحاً   date: 22-10-2015
Author : R Rashed
Book or Source : The development of Arabic mathematics : between arithmetic and algebra
Page and Part : ...


Read More
Date: 22-10-2015 1160
Date: 25-10-2015 1335
Date: 23-10-2015 1189

Born: 29 December 1256 in Marrakesh, Morocco
Died: 1321 in Marrakesh, Morocco

 

Ibn al-Banna is also known as Abu'l-Abbas Ahmad ibn Muhammad ibn Uthman al-Azdi. It is a little unclear whether al-Banna was born in the city of Marrakesh or whether it was the region of Marrakesh which was named Morocco by Europeans. There is a claim that al-Banna was born in Granada in Spain and moved to North Africa for his education. What is certain is that he spent most of his life in Morocco.

The Marinids tribe were allies of the Umayyad caliphs of Córdoba. The tribe lived in eastern Morocco then, under their ruler Abu Yahya, they began to conquer the region. The Marinids captured Fez in 1248 and made it their capital. They captured Marrakesh from the ruling Almohads tribe in 1269, thus taking control of the whole of Morocco. Having conquered Morocco, the Marinids tried to help Granada to prevent the Christian advance through their country. The strong link between Granada and Morocco may account for the confusion as to which country al-Banna was a native.

Morocco was certainly the country that al-Banna was educated in, learning the leading mathematical skills of the period. He studied geometry in general, and Euclid's Elements in particular. He also studied fractional numbers and learnt much of the impressive contributions that the Arabs had made to mathematics over the preceding 400 years. The Marinids had a strong culture for learning and Fez became their centre of learning. At the university in Fez Al-Banna taught all branches of mathematics, which at this time included arithmetic, algebra, geometry and astronomy. Fez was a thriving city with a new quarter being built housing the Royal Palace and the adjoining Great Mosque. Many students studied under al-Banna in this thriving academic community.

It is clear that al-Banna wrote a large number of works, in fact 82 are listed by Renaud (see for example [9]). Not all are on mathematics, but the mathematical texts included an introduction to Euclid's Elements, an algebra text and various works on astronomy. One difficulty with the works on mathematics is knowing how much of the material which al-Banna presents is original and how much is simply his version of work by earlier Arab mathematicians which has been lost. We should certainly say that al-Banna does not claim any originality and, indeed, the style of his writing would suggest that he is collecting together ideas that he has learnt from other mathematicians.

Two "firsts" for al-Banna are that he seems to have been the first to consider a fraction as a ratio between two numbers (see [12] for more details) and he is the first to use the expression almanakc (in Arabic al-manakh meaning weather) in a work containing astronomical and meteorological data.

Perhaps al-Banna's most famous work is Talkhis amal al-hisab (Summary of arithmetical operations) and the Raf al-Hijab which is al-Banna's own commentary on the Talkhis amal al-hisab. It is in this work that al-Banna introduces some mathematical notation which has led certain authors to believe that algebraic symbolism was first developed in Islam by ibn al-Banna and al-Qalasadi (see for example [6]). We refer the reader to the biography of al-Qalasadi where we present arguments to show that neither al-Banna nor al-Qalasadi were the inventors of mathematical notation.

There are, however, many interesting mathematical ideas and results which appear in the Raf al-Hijab. For example it contains continued fractions and they are used to compute approximate square roots. Other interesting results on summing series are the results

13 + 33 + 53 + ... + (2n-1)3 = n2(2n2 - 1) and

12 + 32 + 52 + ... + (2n-1)2 = (2n + 1)2n(2n - 1)/6.

Perhaps the most interesting of all is the work on binomial coefficients which is described in detail in [2] and [3]. If we denote the binomial coefficient p choose k by pCk then al-Banna shows that

pC2 = p(p-1)/2

and then that

pC3 = pC2(p-2)/3.

He writes (see for example [2] or [3]):-

... the ternary combination is thus obtained by multiplying the third of the third term preceding the given number; and so we always multiply the combination that precedes the combination sought by the number that precedes the given number, and whose distance to it is equal to the number of combinations sought. From the product, we take the part that names the number of combinations.

Although this is a little difficult to interpret, what al-Banna is stating here is that

pCk = pCk-1(p - (k - 1) )/k.

He then goes on to give the familiar (to us) result

pCk = p(p - 1)(p - 2)...(p - k + 1)/(k !)

As Rashed points out in [2], this is only a small step from the Pascal triangle results given three hundred years earlier by al-Karaji, then still one hundred years before al-Banna by al-Samawal. However Rashed writes:-

... in our opinion, there is something more fundamental than [the Pascal triangle] results; it is precisely the combinatorial appearance of ibn al-Banna's exposition, together with the relation he partially establishes between polygonal numbers and combinations. It concern, in the first place, triangular numbers and combinations of p objects in twos, and then polygonal numbers of order 4 and combinations of p objects in threes.


 

  1. J Vernet, Biography in Dictionary of Scientific Biography (New York 1970-1990). 
    http://www.encyclopedia.com/doc/1G2-2830900255.html

Books:

  1. R Rashed, The development of Arabic mathematics : between arithmetic and algebra (London, 1994).
  2. R Rashed, Entre arithmétique et algèbre: Recherches sur l'histoire des mathématiques arabes (Paris, 1984).

Articles:

  1. M Aballagh, Les fondements des mathématiques à travers le 'Raf al-Hijab' d'Ibn al-Banna (1256-1321), in Histoire des mathématiques arabes, Algiers, 1986 (Algiers, 1988), 133-156.
  2. M Aballagh, Les fractions entre la théorie et la pratique chez Ibn al-Banna al-Murrakusi (1256-1321), in Histoire de fractions, fractions d'histoire (Basel, 1992), 247-258; 405-406; 411.
  3. G Arrighi, Review of some mathematical symbols (Italian), Physis - Riv. Internaz. Storia Sci. 27 (1-2) (1985), 163-179.
  4. A Djebbar, Enseignement et recherche mathématiques dans le Maghreb des XIIIe-XIVe siècles : étude partielle (Orsay, 1981).
  5. R Rashed, Materials for the study of the history of amicable numbers and combinatorial analysis (Arabic), J. Hist. Arabic Sci. 6 (1-2) (1982), 278-209.
  6. H P J Renaud, Ibn al-Banna de Marrakech, sufi et mathématicien, Hesperis 25 (1938), 13-42.
  7. H P J Renaud, Sur les dates de la vie du mathématicien arabe marocain Ibn al-Banna, Isis 27 (1937), 216-218.
  8. J Samsó and E Millás, The computation of planetary longitudes in the zij of Ibn al-Banna, Arabic Sci. Philos. 8 (2) (1998), 165; 167; 259-286.
  9. M Zarruqi, Fractions in the Morroccan mathematical tradition between the 12th and 15th centuries A.D. as found in anonymous manuscripts (Arabic), in Deuxième Colloque Maghrebin sur l'Histoire des Mathématiques Arabes (Tunis, 1990), A97-A109.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.