المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

وقت نافلة الظهرين.
14-1-2016
الضغط المطلق
16-8-2017
انشاء مزرعة الموز المحمية
5-7-2017
Representing the sounds of speech Introduction
10-6-2022
عدسة مطلية coated lens
3-5-2018
Gauss,s Transformation
25-4-2019

Red-Black Tree  
  
3117   03:35 مساءً   date: 22-5-2022
Author : Bayer, R
Book or Source : "Symmetric Binary B-Trees: Data Structures and Maintenance Algorithms." Acta Informat. 1
Page and Part : ...


Read More
Date: 27-7-2016 1634
Date: 27-2-2022 2315
Date: 13-5-2022 973

Red-Black Tree

RedBlackTree

An extended rooted binary tree satisfying the following conditions:

1. Every node has two children, each colored either red or black.

2. Every tree leaf node is colored black.

3. Every red node has both of its children colored black.

4. Every path from the root to a tree leaf contains the same number (the "black-height") of black nodes.

Let n be the number of internal nodes of a red-black tree. Then the number of red-black trees for n=1, 2, ... is 2, 2, 3, 8, 14, 20, 35, 64, 122, ... (OEIS A001131). The number of trees with black roots and red roots are given by OEIS A001137 and OEIS A001138, respectively.

Let T_h be the generating function for the number of red-black trees of black-height h indexed by the number of tree leaves. Then

 T_(h+1)(x)=[T_h(x)]^2+[T_h(x)]^4,

(1)

where T_1(x)=x+x^2. If T(x) is the generating function for the number of red-black trees, then

 T(x)=x+x^2+T(x^2(1+x)^2)

(2)

(Ruskey). Let rb(n) be the number of red-black trees with n tree leaves, r(n) the number of red-rooted trees, and b(n) the number of black-rooted trees. All three of the quantities satisfy the recurrence relation

 R(n)=sum_(n/4<=n<=n/2)(2m; n-2m)R(m),

(3)

where (n; k) is a binomial coefficient, rb(1)=1rb(2)=2 for R(n)=rb(n)r(1)=r(3)=0r(2)=1 for R(n)=r(n), and b(1)=1 for R(n)=b(n) (Ruskey).


REFERENCES

Bayer, R. "Symmetric Binary B-Trees: Data Structures and Maintenance Algorithms." Acta Informat. 1, 290-306, 1972.

Binstock, A.; and Rex, J. Practical Algorithms for Programmers. Reading, MA: Addison-Wesley, 1995.Cormen, T.; Leiserson, C.; and Rivest, R. Introduction to Algorithms. Cambridge MA: MIT Press, 1990.

Guibas, L. and Sedgewick, R. "A Dichromatic Framework for Balanced Trees." In Proc. 19th IEEE Symp. Foundations of Computer Science, pp. 8-21, 1978.

Rivest, R. L.; Leiserson, C. E.; and Cormen, R. H. Introduction to Algorithms. New York: McGraw-Hill, 1990.

Ruskey, F. "Information on Red-Black Trees." http://www.theory.csc.uvic.ca/~cos/inf/tree/RedBlackTree.html.Skiena, S. S. The Algorithm Design Manual. New York: Springer-Verlag, pp. 177 and 179, 1997.

Sloane, N. J. A. Sequences A001131, A001137, and A001138 in "The On-Line Encyclopedia of Integer Sequences."Wood, D. Data Structures, Algorithms, and Performance. Reading, MA: Addison-Wesley, 1993.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.