1

x

هدف البحث

بحث في العناوين

بحث في اسماء الكتب

بحث في اسماء المؤلفين

اختر القسم

القرآن الكريم
الفقه واصوله
العقائد الاسلامية
سيرة الرسول وآله
علم الرجال والحديث
الأخلاق والأدعية
اللغة العربية وعلومها
الأدب العربي
الأسرة والمجتمع
التاريخ
الجغرافية
الادارة والاقتصاد
القانون
الزراعة
علم الفيزياء
علم الكيمياء
علم الأحياء
الرياضيات
الهندسة المدنية
الأعلام
اللغة الأنكليزية

موافق

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : نظرية البيان :

Labeled Tree

المؤلف:  Biggs, N. L.; Lloyd, E. K.; and Wilson, R. J

المصدر:  Graph Theory 1736-1936. Oxford, England: Oxford University Press

الجزء والصفحة:  ...

22-5-2022

3551

Labeled Tree

 

LabeledTrees

A tree with its nodes labeled. The number of labeled trees on n nodes is n^(n-2), the first few values of which are 1, 1, 3, 16, 125, 1296, ... (OEIS A000272). Cayley (1889) provided the first proof of the number of labeled trees (Skiena 1990, p. 151), and a constructive proof was subsequently provided by Prüfer (1918). Prüfer's result gives an encoding for labeled trees known as Prüfer code (indicated underneath the trees above, where the trees are depicted using an embedding with root at the node labeled 1).

The probability that a random labeled tree is centered is asymptotically equal to 1/2 (Szekeres 1983; Skiena 1990, p. 167).


REFERENCES

Biggs, N. L.; Lloyd, E. K.; and Wilson, R. J. Graph Theory 1736-1936. Oxford, England: Oxford University Press, p. 51, 1976.

Cayley, A. "A Theorem on Trees." Quart. J. Math. 23, 376-378, 1889.

Prüfer, H. "Neuer Beweis eines Satzes über Permutationen." Arch. Math. Phys. 27, 742-744, 1918.

Riordan, J. An Introduction to Combinatorial Analysis. New York: Wiley, p. 128, 1980.

Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.

Sloane, N. J. A. Sequence A000272/M3027 in "The On-Line Encyclopedia of Integer Sequences."Szekeres, G. Distribution of Labeled Trees by Diameter. New York: Springer-Verlag, pp. 392-397, 1983.

van Lint, J. H. and Wilson, R. M. A Course in Combinatorics. New York: Cambridge University Press, 1992.

EN

تصفح الموقع بالشكل العمودي