تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Hamiltonian Path
المؤلف:
Angluin, D. and Valiant, L
المصدر:
"Probabilistic Algorithms for Hamiltonian Circuits and Matchings." J. Comput. Sys. Sci. 18
الجزء والصفحة:
...
11-5-2022
2576
Hamiltonian Path
A Hamiltonian path, also called a Hamilton path, is a graph path between two vertices of a graph that visits each vertex exactly once. If a Hamiltonian path exists whose endpoints are adjacent, then the resulting graph cycle is called a Hamiltonian cycle (or Hamiltonian cycle).
A graph that possesses a Hamiltonian path is called a traceable graph.
In general, the problem of finding a Hamiltonian path is NP-complete (Garey and Johnson 1983, pp. 199-200), so the only known way to determine whether a given general graph has a Hamiltonian path is to undertake an exhaustive search
Any bipartite graph with a vertex parity unbalance has no Hamiltonian paths.
Finding a single Hamiltonian path of a graph is implemented in the Wolfram Language as FindHamiltonianPath[g]. All Hamiltonian paths of a given graph can be found (inefficiently) using the command HamiltonianPath[g, All] in the Wolfram Language package Combinatorica` . A precomputed list of all Hamiltonian paths for many named graphs can be obtained using GraphData[graph, "HamiltonianPaths"], where and both orientations of paths are included (so that
{" src="https://mathworld.wolfram.com/images/equations/HamiltonianPath/Inline3.svg" style="height:21px; width:6px" />1, 2, 3
}" src="https://mathworld.wolfram.com/images/equations/HamiltonianPath/Inline4.svg" style="height:21px; width:6px" /> is considered distinct from
{" src="https://mathworld.wolfram.com/images/equations/HamiltonianPath/Inline5.svg" style="height:21px; width:6px" />3, 2, 1
}" src="https://mathworld.wolfram.com/images/equations/HamiltonianPath/Inline6.svg" style="height:21px; width:6px" />). A precomputed count of the corresponding number of Hamiltonian paths is given by GraphData[graph, "HamiltonianPathCount"].
The total numbers of directed Hamiltonian paths for all simple graphs of orders , 2, ... are 0, 2, 8, 50, 416, 5616, 117308, 4862736, ... (OEIS A193352).
Rubin (1974) describes an efficient search procedure that can find some or all Hamilton paths and circuits in a graph using deductions that greatly reduce backtracking and guesswork. A probabilistic algorithm due to Angluin and Valiant (1979), described by Wilf (1994), can also be useful to find Hamiltonian cycles and paths. A Hamiltonian path between two vertices and
can be found if an algorithm for Hamiltonian cycles is available. This can be done by checking if the original graph
contains the edge
and adding it if not to obtain
. Since a Hamiltonian path with adjacent endpoints is a Hamiltonian cycle and since
and
are now adjacent, finding a Hamiltonian cycle and splitting at the edge gives a Hamiltonian path from
to
in
. Similarly, if no Hamiltonian cycle exists in
, then there is no Hamiltonian path from
to
in
.
The following table summarizes the numbers of (undirected) Hamiltonian paths on various classes of graphs.
graph | formula |
barbell graph | |
cocktail party graph |
|
complete graph |
|
complete bipartite graph |
|
cycle graph |
|
gear graph | |
ladder graph |
|
Möbius ladder |
|
path graph |
1 |
prism graph |
|
sun graph | |
wheel graph |
Recurrence relations for the number of directed Hamiltonian paths for some graph families are summarized below.
graph | order | recurrence |
antiprism graph | 9 | |
crown graph | 3 | |
prism graph |
6 |
REFERENCES
Angluin, D. and Valiant, L. "Probabilistic Algorithms for Hamiltonian Circuits and Matchings." J. Comput. Sys. Sci. 18, 155-190, 1979.
Garey, M. R. and Johnson, D. S. Computers and Intractability: A Guide to the Theory of NP-Completeness. New York: W. H. Freeman, p. 199, 1983.
Rubin, F. "A Search Procedure for Hamilton Paths and Circuits." J. ACM 21, 576-580, 1974.
Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 175, 1990.
Sloane, N. J. A. Sequences A005843, A006070/M5295, A046092, A158664, A033996, A091299, A096969, A096970, A124350, A124352, A137890, A137892, A165134, A193346, and A233826 in "The On-Line Encyclopedia of Integer Sequences."Wilf, H. S. Algorithms and Complexity. pp. 120-122. Summer, 1994. http://www.math.upenn.edu/~wilf/AlgoComp.pdf.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
