Read More
Date: 29-4-2022
1476
Date: 10-5-2022
1501
Date: 21-4-2022
1371
|
Petersen's theorem states that every cubic graph with no bridges has a perfect matching (Petersen 1891; Frink 1926; König 1936; Skiena 1990, p. 244). In fact, this theorem can be extended to read, "every cubic graph with 0, 1, or 2 bridges has a perfect matching."
The graph above shows the smallest counterexample for 3 bridges, namely a connected cubic graph on 16 vertices having no perfect matchings. This graph is implemented in the Wolfram Language as GraphData["Cubic", 16, 14].
Errera (1922) strengthened Petersen's theorem by proving that if all bridges of a connected cubic graph lie on a single path of , then has a perfect matching.
Errera, A. "Du colorage des cartes." Mathesis 36, 56-60, 1922.
Frink, O. "A Proof of Petersen's Theorem." Ann. Math. 27, 491-493, 1926.
König, D. Theorie der endlichen und unendlichen Graphen; kombinatorische Topologie der Streckenkomplexe. 1936.
Petersen, J. "Die Theorie der Regulären Graphen." Acta Math. 15, 193-200, 1891.
Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, p. 244, 1990.
|
|
مخاطر خفية لمكون شائع في مشروبات الطاقة والمكملات الغذائية
|
|
|
|
|
"آبل" تشغّل نظامها الجديد للذكاء الاصطناعي على أجهزتها
|
|
|
|
|
تستخدم لأول مرة... مستشفى الإمام زين العابدين (ع) التابع للعتبة الحسينية يعتمد تقنيات حديثة في تثبيت الكسور المعقدة
|
|
|