تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Incidence Matrix
المؤلف:
Bruck, R. H. and Ryser, H. J
المصدر:
"The Nonexistence of Certain Finite Projective Planes." Canad. J. Math. 1
الجزء والصفحة:
...
14-4-2022
2033
Incidence Matrix
The incidence matrix of a graph gives the (0,1)-matrix which has a row for each vertex and column for each edge, and iff vertex
is incident upon edge
(Skiena 1990, p. 135). However, some authors define the incidence matrix to be the transpose of this, with a column for each vertex and a row for each edge. The physicist Kirchhoff (1847) was the first to define the incidence matrix.
The incidence matrix of a graph (using the first definition) can be computed in the Wolfram Language using IncidenceMatrix[g]. Precomputed incidence matrices for a many named graphs are given in the Wolfram Language by GraphData[graph, "IncidenceMatrix"].
The incidence matrix of a graph and adjacency matrix
of its line graph are related by
(1) |
where is the identity matrix (Skiena 1990, p. 136).
For a -D polytope
, the incidence matrix is defined by
(2) |
The th row shows which
s surround
, and the
th column shows which
s bound
. Incidence matrices are also used to specify projective planes. The incidence matrices for a tetrahedron
are
1 | ||||
1 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | |
0 | 1 | 0 | 1 | 0 | 1 | |
0 | 0 | 1 | 1 | 1 | 0 | |
1 | 1 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | |
1 | 0 | 1 | 0 | |
1 | 1 | 0 | 0 | |
1 | 0 | 0 | 1 | |
0 | 1 | 0 | 1 | |
0 | 0 | 1 | 1 |
1 | |
1 | |
1 | |
1 |
REFERENCES
Bruck, R. H. and Ryser, H. J. "The Nonexistence of Certain Finite Projective Planes." Canad. J. Math. 1, 88-93, 1949.
Kirchhoff, G. "Über die Auflösung der Gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer Ströme geführt wird." Ann. Phys. Chem. 72, 497-508, 1847.
Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 135-136, 1990.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
