تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Puz-Graph
المؤلف:
Vajda, S
المصدر:
Mathematical Games and How to Play Them. Chichester, England: Ellis Horwood
الجزء والصفحة:
...
12-4-2022
1893
Puz-Graph
A notion introduced by R. M. Wilson in 1974. Given a finite graph
with
vertices,
is defined as the graph whose nodes are the labelings of
leaving one node unoccupied, i.e., the ways to place
different counters on
nodes of
. This labelings can be identified with the permutations of
{0,1,2,...,n-1}" src="https://mathworld.wolfram.com/images/equations/Puz-Graph/Inline8.svg" style="height:21px; width:133px" />, so that
has
nodes. Two labelings are connected by an edge in
iff one can be transformed into the other by moving one of the labels along one edge of
.
The possible labelings of two vertices of the path graph are illustrated above, giving
as illustrated.
If is the square graph
, then
consists of two disjoint cycles with 12 nodes. In general, the puz-graph of an
-cycle graph has
connected components, each having
nodes (Vajda 1992). Wilson proved that the puz-graph of a finite simple biconnected graph
that is not polygonal always has two connected components if
is bipartite. Otherwise, with one surprising exception,
is connected. The exception is the puz-graph of the theta-0 graph, which surprisingly has six connected components.
The paths connecting two labelings and
in
represent the sequences of moves that take
to
. Hence, these can be transformed into each other if and only if they belong to the same connected component of
. In most of the cases, this cannot be decided by looking at
, which almost always has too many nodes to be adequate for practical use. This problem is solved using a criterion by Wilson, which can be easily expressed in terms of
,
and
:
and
are linked by a sequence of moves if and only if the distance between their unoccupied nodes and the permutation taking
to
are either both even or both odd.
Wilson's criterion can be applied to the 15 puzzle as follows. Each arrangement of the 15 squares corresponds to a labeling of 15 nodes of the grid graph . Since
is bipartite,
is disconnected, so the puzzle does not always have a solution. This can be seen by looking at the labelings of the 15 puzzle configurations illustrated above. The distance between the unoccupied nodes is 0, but the permutation taking one labeling to the other is the cycle (1 2), which is odd. Hence it is impossible to solve the puzzle starting from the configuration at right.
The Hanoi graph is the puz-graph of the possible configurations of
towers of Hanoi. Since it is connected, the game always has a solution.
REFERENCES
Vajda, S. Mathematical Games and How to Play Them. Chichester, England: Ellis Horwood, pp. 1-2, 1992.
Wilson, R. M. "Graph Puzzles, Homotopy, and the Alternating Group." J. Combin. Th. B 16, 86-96, 1974.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
