Read More
Date: 23-4-2022
2031
Date: 28-3-2022
1250
Date: 3-4-2022
1761
|
A cubic map is three-colorable iff each interior region is bounded by an even number of regions. A non-cubic map bounded by an even number of regions is not necessarily three-colorable, as evidenced by the tetragonal trapezohedron (dual of the square antiprism), whose faces are all bounded by four other faces but which is not three-colorable (it has chromatic number 4). The Penrose tiles are known to be three-colorable (Babilon 2001).
In general polyform packing problems, the most elegant solutions are cubic and three-colorable. The illustration above shows a three-colorable packing of the 63 unholey (out of 64 total) double-L tetrominoes into a rectangle
Babilon, R. "3-Colourability of Penrose Kite-and-Dart Tilings." Disc. Math. 235, 137-143, 2001.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|