المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية
آخر المواضيع المضافة

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

طيف الامتصاص absorption spectrum
16-9-2017
مفهوم التربية
2-9-2016
خلع المهتدي ومـوته
10-10-2017
معدل البذار المستخدم لزراعة الشوندر السكري
19-11-2019
سفيان بن عيينة بن أبي عمران
25-10-2017
Jamaican English The main vowels
2024-04-05

Three-Colorable Map  
  
1696   04:25 مساءً   date: 1-4-2022
Author : Babilon, R
Book or Source : "3-Colourability of Penrose Kite-and-Dart Tilings." Disc. Math. 235
Page and Part : 137-143


Read More
Date: 24-2-2022 1510
Date: 1-5-2022 1809
Date: 17-5-2022 1408

Three-Colorable Map

A cubic map is three-colorable iff each interior region is bounded by an even number of regions. A non-cubic map bounded by an even number of regions is not necessarily three-colorable, as evidenced by the tetragonal trapezohedron (dual of the square antiprism), whose faces are all bounded by four other faces but which is not three-colorable (it has chromatic number 4). The Penrose tiles are known to be three-colorable (Babilon 2001).

Three-ColorableMap

In general polyform packing problems, the most elegant solutions are cubic and three-colorable. The illustration above shows a three-colorable packing of the 63 unholey (out of 64 total) double-L tetrominoes into a rectangle


REFERENCES

Babilon, R. "3-Colourability of Penrose Kite-and-Dart Tilings." Disc. Math. 235, 137-143, 2001.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.