Read More
Date: 9-3-2022
![]()
Date: 14-4-2022
![]()
Date: 9-2-2016
![]() |
A graph having chromatic number
is called a
-colorable graph (Harary 1994, p. 127). In contrast, a graph having
is said to be a k-chromatic graph. Note that
-colorable graphs are related but distinct from
-colored graphs.
The 1, 2, 3, and 7, and 13 distinct simple 2-colorable graphs on , ..., 5 nodes are illustrated above.
The 1, 2, 4, and 10, and 29 distinct simple 3-colorable graphs on , ..., 5 nodes are illustrated above.
The 1, 2, 4, and 11, and 33 distinct simple 4-colorable graphs on , ..., 5 nodes are illustrated above.
The following table gives the numbers of -colorable simple graphs on 1, 2, ... nodes for small
.
OEIS | simple graphs on |
|
2 | A033995 | 1, 2, 3, 7, 13, 35, 88, 303, 1119, ... |
3 | A076315 | 1, 2, 4, 10, 29, 119, 667, 6024, 88500, ... |
4 | A076316 | 1, 2, 4, 11, 33, 150, 985, 11390, 243791, ... |
5 | A076317 | 1, 2, 4, 11, 34, 155, 1037, 12257, 272513, ... |
6 | A076318 | 1, 2, 4, 11, 34, 156, 1043, 12338, 274541, ... |
7 | A076319 | 1, 2, 4, 11, 34, 156, 1044, 12345, 274659, ... |
8 | A076320 | 1, 2, 4, 11, 34, 156, 1044, 12346, 274667, ... |
9 | A076321 | 1, 2, 4, 11, 34, 156, 1044, 12346, 274668, ... |
The 1, 1, 1, 3, and 5 distinct simple connected 2-colorable graphs on , ..., 5 nodes are illustrated above.
The 1, 1, 2, and 5, and 17 distinct simple connected 3-colorable graphs on , ..., 5 nodes are illustrated above.
The 1, 1, 2, and 6, and 20 distinct simple connected 4-colorable graphs on , ..., 5 nodes are illustrated above.
The following table gives the numbers of -colorable simple connected graphs on 1, 2, ... nodes for small
.
OEIS | simple connected graphs on |
|
2 | A005142 | 1, 1, 1, 3, 5, 17, 44, 182, 730, ... |
3 | A076322 | 1, 1, 2, 5, 17, 81, 519, 5218, 81677, ... |
4 | A076323 | 1, 1, 2, 6, 20, 107, 801, 10227, 231228, ... |
5 | A076324 | 1, 1, 2, 6, 21, 111, 847, 11036, 259022, ... |
6 | A076325 | 1, 1, 2, 6, 21, 112, 852, 11110, 260962, ... |
7 | A076326 | 1, 1, 2, 6, 21, 112, 853, 11116, 261072, ... |
8 | A076327 | 1, 1, 2, 6, 21, 112, 853, 11117, 261079, ... |
9 | A076328 | 1, 1, 2, 6, 21, 112, 853, 11117, 261080, ... |
The 2 and 7 distinct simple labeled 2-colorable graphs on and 3 nodes are illustrated above.
The 2 and 8 distinct simple labeled 3-colorable graphs on and 3 nodes are illustrated above.
The following table gives the numbers of labeled -colorable graphs on 1, 2, ... nodes for small
. The sequence
(OEIS A047864) of 2-colorable labeled graphs on
nodes has a rather remarkable generating function, as discussed by Wilf (1994, p. 89). Define
giving the sequence 1, 2, 6, 26, 162, ... (OEIS A047863). Then is given by
The corresponding problem of enumerating -colorable graphs for
appears to be very hard.
OEIS | labeled graphs on |
|
1 | 1, 1, 1, 1, 1, 1, ... | |
2 | A047864 | 1, 2, 7, 41, 376, 5177, ... |
3 | A084279 | 1, 2, 8, 63, 958, 27554, ... |
4 | A084280 | 1, 2, 8, 64, 1023, 32596, ... |
5 | A084281 | 1, 2, 8, 64, 1024, 32767, ... |
6 | A084282 | 1, 2, 8, 64, 1024, 32768, ... |
The 1, 3, and 19 distinct simple connected labeled 2-colorable graphs on , 3, and 4 nodes are illustrated above.
The 1, 4, and 37 distinct simple connected labeled 3-colorable graphs on , 3, and 4 nodes are illustrated above.
The following table gives the numbers of connected labeled -colorable graphs on 1, 2, ... nodes for small
.
OEIS | connected labeled graphs on |
|
1 | 1, 0, 0, 0, 0, ... | |
2 | A001832 | 1, 1, 3, 19, 195, 3031, 67263, ... |
3 | A084283 | 1, 1, 4, 37, 667, 21886, ... |
4 | A084284 | 1, 1, 4, 38, 727, 26538, ... |
5 | A084285 | 1, 1, 4, 38, 728, 26703, ... |
6 | A084286 | 1, 1, 4, 38, 728, 26704, ... |
Finch, S. R. "Bipartite, -Colorable and
-Colored Graphs." June 5, 2003.
http://algo.inria.fr/bsolve/.Harary, F. Graph Theory. Reading, MA: Addison-Wesley, 1994.
Sloane, N. J. A. Sequences A001832/M3063, A005142/M2501, A033995, A047864, A076315, A076316, A076317, A076318, A076319, A076320, A076321, A076322, A076323, A076324, A076325, A076326, A076327, A076328, A084279, A084280, A084281, A084282, A084283, A084284, A084285, and A084286 in "The On-Line Encyclopedia of Integer Sequences.
"Wilf, H. S. Generatingfunctionology, 2nd ed. New York: Academic Press, p. 89, 1993.
|
|
لخفض ضغط الدم.. دراسة تحدد "تمارين مهمة"
|
|
|
|
|
طال انتظارها.. ميزة جديدة من "واتساب" تعزز الخصوصية
|
|
|
|
|
مشاتل الكفيل تزيّن مجمّع أبي الفضل العبّاس (عليه السلام) بالورد استعدادًا لحفل التخرج المركزي
|
|
|