

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Wheel Graph
المؤلف:
Brandstädt, A.; Le, V. B.; and Spinrad, J. P.
المصدر:
Graph Classes: A Survey. Philadelphia, PA: SIAM
الجزء والصفحة:
...
23-3-2022
3699
Wheel Graph
As defined in this work, a wheel graph of order
, sometimes simply called an
-wheel (Harary 1994, p. 46; Pemmaraju and Skiena 2003, p. 248; Tutte 2005, p. 78), is a graph that contains a cycle of order
and for which every graph vertex in the cycle is connected to one other graph vertex known as the hub. The edges of a wheel which include the hub are called spokes (Skiena 1990, p. 146). The wheel
can be defined as the graph join
, where
is the singleton graph and
is the cycle graph, making it a
-cone graph.
Note that some authors (e.g., Gallian 2007) adopt the alternate convention that denotes the wheel graph on
nodes.
The tetrahedral graph (i.e., ) is isomorphic to
, and
is isomorphic to the complete tripartite graph
. In general, the
-wheel graph is the skeleton of an
-pyramid.
The wheel graph is isomorphic to the Jahangir graph
.
is one of the two graphs obtained by removing two edges from the pentatope graph
, the other being the house X graph.
Wheel graphs are graceful (Frucht 1979).
The wheel graph has graph dimension 2 for
(and hence is unit-distance) and dimension 3 otherwise (and hence not unit-distance) (Erdős et al. 1965, Buckley and Harary 1988).
Any wheel graph is a self-dual graph.
Wheel graphs can be constructed in the Wolfram Language using WheelGraph[n]. Precomputed properties of a number of wheel graphs are available via GraphData[{" src="https://mathworld.wolfram.com/images/equations/WheelGraph/Inline24.svg" style="height:22px; width:6px" />"Wheel", n
}" src="https://mathworld.wolfram.com/images/equations/WheelGraph/Inline25.svg" style="height:22px; width:6px" />].
The number of graph cycles in the wheel graph is given by
, or 7, 13, 21, 31, 43, 57, ... (OEIS A002061) for
, 5, ....
In a wheel graph, the hub has degree , and other nodes have degree 3. Wheel graphs are 3-connected.
, where
is the complete graph of order four. The chromatic number of
is
|
(1) |
The wheel graph has chromatic polynomial
|
(2) |
REFERENCES
Brandstädt, A.; Le, V. B.; and Spinrad, J. P. Graph Classes: A Survey. Philadelphia, PA: SIAM, p. 19, 1987.
Buckley, F. and Harary, F. "On the Euclidean Dimension of a Wheel." Graphs and Combin. 4, 23-30, 1988.
Frucht, R. "Graceful Numbering of Wheels and Related Graphs." Ann. New York Acad. Sci. 319, 219-229, 1979.
Erdős, P.; Harary, F.; and Tutte, W. T. "On the Dimension of a Graph." Mathematika 12, 118-122, 1965.
Gallian, J. "Dynamic Survey of Graph Labeling." Elec. J. Combin. DS6. Dec. 21, 2018.
https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6.Harary, F. Graph Theory. Reading, MA: Addison-Wesley, p. 46, 1994.
Pemmaraju, S. and Skiena, S. "Cycles, Stars, and Wheels." §6.2.4 in Computational Discrete Mathematics: Combinatorics and Graph Theory in Mathematica. Cambridge, England: Cambridge University Press, pp. 248-249, 2003.
Saaty, T. L. and Kainen, P. C. The Four-Color Problem: Assaults and Conquest. New York: Dover, p. 148, 1986.
Skiena, S. "Cycles, Stars, and Wheels." §4.2.3 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 91 and 144-147, 1990.
Sloane, N. J. A. Sequence A002061/M2638 in "The On-Line Encyclopedia of Integer Sequences."Tutte, W. T. Graph Theory. Cambridge, England: Cambridge University Press, 2005.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)