المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

قاعدة الصحّة
13-9-2016
حامل الكاميرا Tripod
19-12-2021
هل حقق الخليل أهداف الإمامة ؟
29-09-2015
الاحتراق النفسي لدى الإعلاميين
1-9-2020
كلام الامام الباقر عن الاحداث قبل حدوثها
15-04-2015
(FROM) ING
2023-04-01

Platonic Graph  
  
1329   04:25 مساءً   date: 23-3-2022
Author : Bondy, J. A. and Murty, U. S. R.
Book or Source : Graph Theory with Applications. New York: North Holland
Page and Part : ...


Read More
Date: 29-4-2022 1256
Date: 14-4-2022 940
Date: 6-3-2022 1387

Platonic Graph

 

PlatonicGraphs

A polyhedral graph corresponding to the skeleton of a Platonic solid. The five platonic graphs, the tetrahedral graph, cubical graph, octahedral graph, dodecahedral graph, and icosahedral graph, are illustrated above. They are special cases of Schlegel graphs.

Platonic graphs are graceful (Gardner 1983, pp. 158 and 163-164).

The following table summarizes the Platonic graphs and some of their properties.

graph G regularity V E |Aut(G)| Hamiltonian Eulerian vertex-transitive edge-transitive
cubical graph cubic 8 12 48 yes no yes yes
dodecahedral graph cubic 20 30 120 yes no yes yes
icosahedral graph quintic 12 30 120 yes no yes yes
octahedral graph quartic 6 12 48 yes yes yes yes
tetrahedral graph cubic 4 6 24 yes no yes yes

REFERENCES

Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, p. 234, 1976.

Gardner, M. "Golomb's Graceful Graphs." Ch. 15 in Wheels, Life, and Other Mathematical Amusements. New York: W. H. Freeman, pp. 152-165, 1983.

Read, R. C. and Wilson, R. J. An Atlas of Graphs. Oxford, England: Oxford University Press, pp. 263 and 266, 1998.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.