Read More
Date: 15-5-2022
1275
Date: 19-4-2022
1455
Date: 13-3-2022
1322
|
Let be the smallest tour length for points in a -D hypercube. Then there exists a smallest constant such that for all optimal tours in the hypercube,
(1) |
and a constant such that for almost all optimal tours in the hypercube,
(2) |
These constants satisfy the inequalities
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
(Fejes Tóth 1940, Verblunsky 1951, Few 1955, Beardwood et al. 1959), where
(10) |
is the gamma function, is an expression involving Struve functions and Bessel functions of the second kind,
(11) |
(OEIS A086306; Karloff 1989), and
(12) |
(OEIS A086307; Goddyn 1990).
In the limit ,
(13) |
|||
(14) |
|||
(15) |
and
(16) |
where
(17) |
and is the best sphere packing density in -D space (Goddyn 1990, Moran 1984, Kabatyanskii and Levenshtein 1978). Steele and Snyder (1989) proved that the limit exists.
Now consider the constant
(18) |
so
(19) |
Nonrigorous numerical estimates give (Johnson et al. 1996) and (Percus and Martin 1996).
A certain self-avoiding space-filling function is an optimal tour through a set of points, where can be arbitrarily large. It has length
(20) |
(OEIS A073008), where is the length of the curve at the th iteration and is the point-set size (Norman and Moscato 1995).
Applegate, D. L.; Bixby, R. E.; Chvátal, V.; Cook, W.; Espinoza, D. G.; Goycoolea, M.; and Helsgaun, K. "Certification of an Optimal TSP Tour Through 85,900 Cities." Oper. Res. Lett. 37, 11-15, 2009.
Beardwood, J.; Halton, J. H.; and Hammersley, J. M. "The Shortest Path Through Many Points." Proc. Cambridge Phil. Soc. 55, 299-327, 1959.
Chartrand, G. "The Salesman's Problem: An Introduction to Hamiltonian Graphs." §3.2 in Introductory Graph Theory. New York: Dover, pp. 67-76, 1985.
Fejes Tóth, L. "Über einen geometrischen Satz." Math. Zeit. 46, 83-85, 1940.
Few, L. "The Shortest Path and the Shortest Road Through Points." Mathematika 2, 141-144, 1955.
Finch, S. R. "Traveling Salesman Constants." §8.5 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 497-503, 2003.
Flood, M. "The Travelling Salesman Problem." Operations Res. 4, 61-75, 1956.Goddyn, L. A. "Quantizers and the Worst Case Euclidean Traveling Salesman Problem." J. Combin. Th. Ser. B 50, 65-81, 1990.
Johnson, D. S.; McGeoch, L. A.; and Rothberg, E. E. "Asymptotic Experimental Analysis for the Held-Karp Traveling Salesman Bound." In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms. Held in San Francisco, California, January 22-24, 1995. Philadelphia, PA: ACM, pp. 341-350, 1996.
Kabatyanskii, G. A. and Levenshtein, V. I. "Bounds for Packing on a Sphere and in Space." Problems Inform. Transm. 14, 1-17, 1978.
Karloff, H. J. "How Long Can a Euclidean Traveling Salesman Tour Be?" SIAM J. Disc. Math. 2, 91-99, 1989.
Moran, S. "On the Length of Optimal TSP Circuits in Sets of Bounded Diameter." J. Combin. Th. Ser. B 37, 113-141, 1984.
Moscato, P. "Fractal Instances of the Traveling Salesman Constant." http://www.ing.unlp.edu.ar/cetad/mos/FRACTAL_TSP_home.html.Norman, M. G. and Moscato, P. "The Euclidean Traveling Salesman Problem and a Space-Filling Curve." Chaos Solitons Fractals 6, 389-397, 1995.
Percus, A. G. and Martin, O. C. "Finite Size and Dimensional Dependence in the Euclidean Traveling Salesman Problem." Phys. Rev. Lett. 76, 1188-1191, 1996.
Sloane, N. J. A. Sequences A073008, A086306, and A086307 in "The On-Line Encyclopedia of Integer Sequences."Steele, J. M. and Snyder, T. L. "Worst-Case Growth Rates of Some Classical Problems of Combinatorial Optimization." SIAM J. Comput. 18, 278-287, 1989.
Verblunsky, S. "On the Shortest Path Through a Number of Points." Proc. Amer. Math. Soc. 2, 904-913, 1951.
|
|
كل ما تود معرفته عن أهم فيتامين لسلامة الدماغ والأعصاب
|
|
|
|
|
ماذا سيحصل للأرض إذا تغير شكل نواتها؟
|
|
|
|
|
جامعة الكفيل تناقش تحضيراتها لإطلاق مؤتمرها العلمي الدولي السادس
|
|
|