The girth of a graphs is the length of one of its (if any) shortest graph cycles. Acyclic graphs are considered to have infinite girth (Skiena 1990, p. 191). The girth of a graph may be found using Girth[g] in the Wolfram Language package Combinatorica` . Precomputed girths for many named graphs can be obtained using GraphData[graph, "Girth"].
The following table gives examples of graphs with various girths.
girth | example |
3 | tetrahedral graph, complete graph |
4 | cubical graph, utility graph |
5 | Petersen graph |
6 | Heawood graph |
7 | McGee graph |
8 | Levi graph |
REFERENCES
Harary, F. Graph Theory. Reading, MA: Addison-Wesley, p. 13, 1994.
Skiena, S. "Girth." §5.3.2 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 190-192, 1990.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|