المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
{ان أولى الناس بإبراهيم للذين اتبعوه}
2024-10-31
{ما كان إبراهيم يهوديا ولا نصرانيا}
2024-10-31
أكان إبراهيم يهوديا او نصرانيا
2024-10-31
{ قل يا اهل الكتاب تعالوا الى كلمة سواء بيننا وبينكم الا نعبد الا الله}
2024-10-31
المباهلة
2024-10-31
التضاريس في الوطن العربي
2024-10-31


Recursively Undecidable  
  
636   08:00 مساءً   date: 20-1-2022
Author : Davis, M.
Book or Source : Computability and Unsolvability. New York: Dover 1982.Kleene, S. C. Mathematical Logic. New York: Dover, 2002.
Page and Part : ...


Read More
Date: 8-2-2022 690
Date: 12-2-2022 851
Date: 24-1-2022 984

Recursively Undecidable


Determination of whether predicate P(x_1,...,x_n) is true or false for any given values of x_1, ..., x_n is called its decision problem. The decision problem for predicate P(x_1,...,x_n) is called recursively decidable if there is a total recursive function f(x_1,...,x_n) such that

 f(x_1,...,x_n)={1   if P(x_1,...,x_n) is true; 0   if P(x_1,...,x_n) is false.

(1)

Given the equivalence of computability and recursiveness, this definition may be restated with reference to computable functions instead of recursive functions.

The halting problem was one of the first to be shown recursively undecidable. The formulation of recursive undecidability of the halting problem and many other recursively undecidable problems is based on Gödel numbers. For instance, the problem of deciding for any given x whether the Turing machine whose Gödel number is x is total is recursively undecidable. Hilbert's tenth problem is perhaps the most famous recursively undecidable problem.

Most proofs of recursive undecidability use reduction. They show that recursive decidability of the problem under study would imply recursive decidability of another problem known to be recursively undecidable. As far as direct proofs are concerned, they usually employ the idea of the Cantor diagonal method.


REFERENCES

Davis, M. Computability and Unsolvability. New York: Dover 1982.Kleene, S. C. Mathematical Logic. New York: Dover, 2002.

Rogers, H. Theory of Recursive Functions and Effective Computability. Cambridge, MA: MIT Press, 1987.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.