Read More
Date: 20-8-2021
![]()
Date: 22-8-2021
![]()
Date: 28-8-2021
![]() |
The definition of an Anosov map is the same as for an Anosov diffeomorphism except that instead of being a diffeomorphism, it is a map. In particular, an Anosov map is a map f of a manifold
to itself such that the tangent bundle of
is hyperbolic with respect to
.
A trivial example is to map all of to a single point of
. Here, the eigenvalues are all zero. A less trivial example is an expanding map on the circle
, e.g.,
, where
is identified with the real numbers (mod 1). Here, all the eigenvalues equal 2 (i.e., the eigenvalue at each point of
). Note that this map is not a diffeomorphism because
, so it has no inverse.
A nontrivial example is formed by taking Arnold's cat map on the 2-torus , and crossing it with an expanding map on
to form an Anosov map on the 3-torus
, where
denotes the Cartesian product. In other words,
![]() |
REFERENCES:
Anosov, D. "Roughness of Geodesic Flows on Compact Riemannian Manifolds of Negative Curvature." Dokl. Akad. Nauk SSSR 145, 707-709, 1962. English translation in Soviet Math. Dokl. 3, 1068-1069, 1962.
Anosov, D. "Ergodic Properties of Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature." Dokl. Akad. Nauk SSSR 151, 1250-1252, 1963. English translated in Soviet Math. Dokl. 4, 1153-1156, 1963.
Lichtenberg, A. J. and Lieberman, M. A. Regular and Chaotic Dynamics, 2nd ed. New York: Springer-Verlag, pp. 305-307, 1992.
Sondow, J. "Fixed Points of Anosov Maps of Certain Manifolds." Proc. Amer. Math. Soc. 61, 381-384, 1976.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|