Unicoherent Space					
				 
				
					
						
						 المؤلف:  
						Charatonik, J. J. and Prajs, J. R.					
					
						
						 المصدر:  
						"On Local Connectedness of Absolute Retracts." Pacific J. Math. 201					
					
						
						 الجزء والصفحة:  
						...					
					
					
						
						30-7-2021
					
					
						
						1784					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Unicoherent Space
Let 
 be a connected topological space. Then 
 is unicoherent provided that for any closed connected subsets 
 and 
 of 
, if 
, then 
 is connected.

An interval, say [0,1], is unicoherent, but a circle, say 
{e^(itheta):theta in [0,2pi]} subset= C" src="https://mathworld.wolfram.com/images/equations/UnicoherentSpace/Inline8.gif" style="height:21px; width:154px" />, is not unicoherent. An interesting example of a unicoherent space is a ray winding down on a circle. Specifically, let 
, where 
{(1+1/(1+theta))e^(itheta):0<=theta<infty} subset= C" src="https://mathworld.wolfram.com/images/equations/UnicoherentSpace/Inline10.gif" style="height:23px; width:198px" />. Then the space 
, illustrated above, is unicoherent.
REFERENCES:
Charatonik, J. J. and Prajs, J. R. "On Local Connectedness of Absolute Retracts." Pacific J. Math. 201, 83-88, 2001.
Mackowiak, T. "Retracts of Hereditarily Unicoherent Continua." Bull. Acad. Polon. Sci. Ser. Sci. Math. 28, 177-183, 1980.
				
				
					
					
					 الاكثر قراءة في  التبلوجيا 					
					
				 
				
				
					
					
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة