المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
غزوة الحديبية والهدنة بين النبي وقريش
2024-11-01
بعد الحديبية افتروا على النبي « صلى الله عليه وآله » أنه سحر
2024-11-01
المستغفرون بالاسحار
2024-11-01
المرابطة في انتظار الفرج
2024-11-01
النضوج الجنسي للماشية sexual maturity
2024-11-01
المخرجون من ديارهم في سبيل الله
2024-11-01

حاجة العصر إلى التفسير الموضوعي
13-10-2014
استخدامات العينات في غير الدراسات الاستطلاعية
17-3-2022
الخطوات الثلاث للتصوير الرقمي
22/11/2022
القرية الكافرة بأنعم الله
9-11-2014
مفتاح الخريطة
27-5-2018
معنى كلمة حدث
10-12-2015

Hausdorff Axioms  
  
1061   04:01 مساءً   date: 21-7-2021
Author : Hausdorff, F
Book or Source : Grundzüge der Mengenlehre. Leipzig, Germany: von Veit, 1914. Republished as Set Theory, 2nd ed. New York: Chelsea, 1962.
Page and Part : ...


Read More
Date: 10-7-2021 1117
Date: 17-6-2021 1483
Date: 22-6-2021 3758

Hausdorff Axioms

The axioms formulated by Hausdorff (1919) for his concept of a topological space. These axioms describe the properties satisfied by subsets of elements x in a neighborhood set E of x.

1. There corresponds to each point x at least one neighborhood U(x), and each neighborhood U(x) contains the point x.

2. If U(x) and V(x) are two neighborhoods of the same point x, there must exist a neighborhood W(x) that is a subset of both.

3. If the point y lies in U(x), there must exist a neighborhood U(y) that is a subset of U(x).

4. For two different points x and y, there are two corresponding neighborhoods U(x) and U(y) with no points in common.


REFERENCES:

Hausdorff, F. Grundzüge der Mengenlehre. Leipzig, Germany: von Veit, 1914. Republished as Set Theory, 2nd ed. New York: Chelsea, 1962.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.