Read More
Date: 6-6-2021
3138
Date: 13-5-2021
1997
Date: 25-7-2021
1498
|
The signature of a knot can be defined using the skein relationship
(1) |
(2) |
and
(3) |
where is the Conway polynomial and is an odd number.
Many unknotting numbers can be determined using a knot's signature.
Knot signatures are implemented in the Wolfram Language as KnotData[knot, "Signature"]. The following table summarizes knot signatures for knots on 10 of fewer crossings.
REFERENCES:
Gordon, C. M.; Litherland, R. A.; and Murasugi, K. "Signatures of Covering Links." Canad. J. Math. 33, 381-394, 1981.
Murasugi, K. "On the Signature of Links." Topology 9, 283-298, 1970.
Murasugi, K. "Signatures and Alexander Polynomials of Two-Bridge Knots." C. R. Math. Rep. Acad. Sci. Canada 5, 133-136, 1983.
Murasugi, K. "On the Signature of a Graph." C. R. Math. Rep. Acad. Sci. Canada 10, 107-111, 1988.
Murasugi, K. "On Invariants of Graphs with Applications to Knot Theory." Trans. Amer. Math. Soc. 314, 1-49, 1989.
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, 1976.
Stoimenow, A. "Signatures." https://www.ms.u-tokyo.ac.jp/~stoimeno/ptab/sig10.html.
|
|
مخاطر خفية لمكون شائع في مشروبات الطاقة والمكملات الغذائية
|
|
|
|
|
"آبل" تشغّل نظامها الجديد للذكاء الاصطناعي على أجهزتها
|
|
|
|
|
جامعة الكفيل تعلن عن فرص توظيف في عددٍ من الاختصاصات ضمن ملاكاتها
|
|
|