Read More
Date: 15-7-2021
1066
Date: 24-6-2017
1949
Date: 6-7-2021
1148
|
The Alexander invariant of a knot is the homology of the infinite cyclic cover of the complement of , considered as a module over , the ring of integral laurent polynomials. The Alexander invariant for a classical tame knot is finitely presentable, and only is significant.
For any knot in whose complement has the homotopy type of a finite CW-complex, the Alexander invariant is finitely generated and therefore finitely presentable. Because the Alexander invariant of a tame knot in has a square presentation matrix, its Alexander ideal is principal and it has an Alexander polynomial denoted .
REFERENCES:
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, pp. 206-207, 1976.
|
|
مخاطر خفية لمكون شائع في مشروبات الطاقة والمكملات الغذائية
|
|
|
|
|
"آبل" تشغّل نظامها الجديد للذكاء الاصطناعي على أجهزتها
|
|
|
|
|
تستخدم لأول مرة... مستشفى الإمام زين العابدين (ع) التابع للعتبة الحسينية يعتمد تقنيات حديثة في تثبيت الكسور المعقدة
|
|
|