Read More
Date: 31-7-2021
1793
Date: 12-5-2021
1585
Date: 6-6-2021
2111
|
de Rham cohomology is a formal set-up for the analytic problem: If you have a differential k-form on a manifold , is it the exterior derivative of another differential k-form ? Formally, if then . This is more commonly stated as , meaning that if is to be the exterior derivative of a differential k-form, a necessary condition that must satisfy is that its exterior derivative is zero.
de Rham cohomology gives a formalism that aims to answer the question, "Are all differential -forms on a manifold with zero exterior derivative the exterior derivatives of -forms?" In particular, the th de Rham cohomology vector space is defined to be the space of all -forms with exterior derivative 0, modulo the space of all boundaries of -forms. This is the trivial vector space iff the answer to our question is yes.
The fundamental result about de Rham cohomology is that it is a topological invariant of the manifold, namely: the th de Rham cohomology vector space of a manifold is canonically isomorphic to the Alexander-Spanier cohomology vector space (also called cohomology with compact support). In the case that is compact, Alexander-Spanier cohomology is exactly singular cohomology.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|