Read More
Date: 1-11-2020
494
Date: 13-9-2020
1649
Date: 18-11-2019
1031
|
is the smallest prime such that , , or is divisible by , where is the primorial of . Ashbacher (1996) shows that only exists
1. If there are no square or higher powers in the factorization of , or
2. If there exists a prime such that , where is the smallest power contained in the factorization of .
Therefore, does not exist for the squareful numbers , 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, ... (OEIS A013929). The first few values of , where defined, are 2, 2, 2, 3, 3, 3, 5, 7, ... (OEIS A046026).
REFERENCES:
Ashbacher, C. "A Note on the Smarandache Near-To-Primordial Function." Smarandache Notions J. 7, 46-49, 1996.
Mudge, M. R. "The Smarandache Near-To-Primorial Function." Abstracts of Papers Presented to the Amer. Math. Soc. 17, 585, 1996.
Sloane, N. J. A. Sequences A013929 and A046026 in "The On-Line Encyclopedia of Integer Sequences."
|
|
مخاطر خفية لمكون شائع في مشروبات الطاقة والمكملات الغذائية
|
|
|
|
|
"آبل" تشغّل نظامها الجديد للذكاء الاصطناعي على أجهزتها
|
|
|
|
|
تستخدم لأول مرة... مستشفى الإمام زين العابدين (ع) التابع للعتبة الحسينية يعتمد تقنيات حديثة في تثبيت الكسور المعقدة
|
|
|