Read More
Date: 29-10-2020
![]()
Date: 22-12-2020
![]()
Date: 3-2-2020
![]() |
Let a divisor of
be called a 1-ary (or unitary) divisor if
(i.e.,
is relatively prime to
). Then
is called a
-ary divisor of
, written
, if the greatest common
-ary divisor of
and
is 1 (Cohen 1990).
In this notation, is written
, and
is written
.
is an infinitary divisor of
(with
) if
.
Suryanarayana (1968) unfortunately uses a different and conflicting definition.
REFERENCES:
Abbott, P. "In and Out: -ary Divisors." Mathematica J. 9, 702-706, 2005.
Cohen, G. L. "On an Integer's Infinitary Divisors." Math. Comput. 54, 395-411, 1990.
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 54, 1994.
Suryanarayana, D. "The Number of -ary Divisors of an Integer." Monatschr. Math. 72, 445-450, 1968.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|