Read More
Date: 9-1-2021
731
Date: 14-2-2020
651
Date: 27-2-2020
1598
|
Let the multiples , , ..., of an integer such that be taken. If there are an even number of least positive residues mod of these numbers , then is a quadratic residue of . If is odd, is a quadratic nonresidue. Gauss's lemma can therefore be stated as , where is the Legendre symbol. It was proved by Gauss as a step along the way to the quadratic reciprocity theorem (Nagell 1951).
The following result is known as Euclid's lemma, but is incorrectly termed "Gauss's Lemma" by Séroul (2000, p. 10). Euclid's lemma states that for any two integers and , suppose . Then if is relatively prime to , then divides .
REFERENCES:
Nagell, T. "Gauss's Lemma." §40 in Introduction to Number Theory. New York: Wiley, pp. 139-141, 1951.
Séroul, R. "Gauss's Lemma." §2.4.2 in Programming for Mathematicians. Berlin: Springer-Verlag, pp. 10-11, 2000.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|