المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27


Number Theory  
  
720   02:49 صباحاً   date: 16-7-2020
Author : Andrews, G. E
Book or Source : Number Theory. New York: Dover, 1994.
Page and Part : ...


Read More
Date: 27-9-2020 688
Date: 22-1-2020 584
Date: 29-11-2019 700

Number Theory

Number theory is a vast and fascinating field of mathematics, sometimes called "higher arithmetic," consisting of the study of the properties of whole numbers. Primes and prime factorization are especially important in number theory, as are a number of functions such as the divisor function, Riemann zeta function, and totient function. Excellent introductions to number theory may be found in Ore (1988) and Beiler (1966). The classic history on the subject (now slightly dated) is that of Dickson (2005abc).

The great difficulty in proving relatively simple results in number theory prompted no less an authority than Gauss to remark that "it is just this which gives the higher arithmetic that magical charm which has made it the favorite science of the greatest mathematicians, not to mention its inexhaustible wealth, wherein it so greatly surpasses other parts of mathematics." Gauss, often known as the "prince of mathematics," called mathematics the "queen of the sciences" and considered number theory the "queen of mathematics" (Beiler 1966, Goldman 1997).


REFERENCES:

Andrews, G. E. Number Theory. New York: Dover, 1994.

Andrews, G. E.; Berndt, B. C.; and Rankin, R. A. (Ed.). Ramanujan Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987. Boston, MA: Academic Press, 1988.

Anglin, W. S. The Queen of Mathematics: An Introduction to Number Theory. Dordrecht, Netherlands: Kluwer, 1995.

Apostol, T. M. Introduction to Analytic Number Theory. New York: Springer-Verlag, 1976.

Ayoub, R. G. An Introduction to the Analytic Theory of Numbers. Providence, RI: Amer. Math. Soc., 1963.

Beiler, A. H. Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, 2nd ed. New York: Dover, 1966.

Bellman, R. E. Analytic Number Theory: An Introduction. Reading, MA: Benjamin/Cummings, 1980.

Berndt, B. C. Ramanujan's Notebooks, Part I. New York: Springer-Verlag, 1985.

Berndt, B. C. Ramanujan's Notebooks, Part II. New York: Springer-Verlag, 1988.

Berndt, B. C. Ramanujan's Notebooks, Part III. New York: Springer-Verlag, 1997a.

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1993.

Berndt, B. C. Ramanujan's Notebooks, Part V. New York: Springer-Verlag, 1997b.

Berndt, B. C. and Rankin, R. A. Ramanujan: Letters and Commentary. Providence, RI: Amer. Math. Soc, 1995.

Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.

Bressoud, D. M. and Wagon, S. A Course in Computational Number Theory. London: Springer-Verlag, 2000.

Burr, S. A. The Unreasonable Effectiveness of Number Theory. Providence, RI: Amer. Math. Soc., 1992.

Burton, D. M. Elementary Number Theory, 4th ed. Boston, MA: Allyn and Bacon, 1989.

Carmichael, R. D. The Theory of Numbers, and Diophantine Analysis. New York: Dover, 1959.

Cohen, H. Advanced Topics in Computational Number Theory. New York: Springer-Verlag, 2000.

Cohn, H. Advanced Number Theory. New York: Dover, 1980.

Courant, R. and Robbins, H. "The Theory of Numbers." Supplement to Ch. 1 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, pp. 21-51, 1996.

Davenport, H. The Higher Arithmetic: An Introduction to the Theory of Numbers, 6th ed. Cambridge, England: Cambridge University Press, 1992.

Davenport, H. and Montgomery, H. L. Multiplicative Number Theory, 2nd ed. New York: Springer-Verlag, 1980.

Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, 2005a.

Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Dover, 2005b.

Dickson, L. E. History of the Theory of Numbers, Vol. 3: Quadratic and Higher Forms. New York: Dover, 2005c.

Dudley, U. Elementary Number Theory. San Francisco, CA: W. H. Freeman, 1978.

Friedberg, R. An Adventurer's Guide to Number Theory. New York: Dover, 1994.

Gauss, C. F. Disquisitiones Arithmeticae. New Haven, CT: Yale University Press, 1966.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.