Read More
Date: 28-10-2019
845
Date: 12-1-2021
850
Date: 8-2-2020
642
|
Let be a prime number, then
where and are homogeneous polynomials in and with integer coefficients. Gauss (1965, p. 467) gives the coefficients of and up to .
Kraitchik (1924) generalized Gauss's formula to odd squarefree integers . Then Gauss's formula can be written in the slightly simpler form
where and have integer coefficients and are of degree and , respectively, with the totient function and a cyclotomic polynomial. In addition, is symmetric if is even; otherwise it is antisymmetric. is symmetric in most cases, but it antisymmetric if is of the form (Riesel 1994, p. 436). The following table gives the first few and s (Riesel 1994, pp. 436-442).
5 | 1 | |
7 | ||
11 |
REFERENCES:
Gauss, C. F. §356-357 in Untersuchungen über höhere Arithmetik. New York: Chelsea, pp. 425-428 and 467, 1965.
Kraitchik, M. Recherches sue la théorie des nombres, tome I. Paris: Gauthier-Villars, pp. 93-129, 1924.
Kraitchik, M. Recherches sue la théorie des nombres, tome II. Paris: Gauthier-Villars, pp. 1-5, 1929.
Riesel, H. "Gauss's Formula for Cyclotomic Polynomials." In tables at end of Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, pp. 436-442, 1994.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
اتحاد كليات الطب الملكية البريطانية يشيد بالمستوى العلمي لطلبة جامعة العميد وبيئتها التعليمية
|
|
|