Read More
Date: 24-10-2020
695
Date: 21-11-2020
955
Date: 20-5-2020
1526
|
The conjecture that there are only finitely many triples of relatively prime integer powers , , for which
(1) |
with
(2) |
Darmon and Merel (1997) have shown that there are no relatively prime solutions with . Ten solutions are known,
(3) |
for , and
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
|||
(8) |
|||
(9) |
|||
(10) |
|||
(11) |
|||
(12) |
(Mauldin 1997).
The following table summarizes known solutions (Poonen et al. 2005). Any remaining solutions would satisfy the Tijdeman-Zagier conjecture, also known popularly as Beal's conjecture (Elkies 2007).
exponents | reference |
(2, 3, 7) | Poonen et al. (2005) |
Wiles | |
(2, 3, 8), (2, 3, 9), (2, 4, 5), | Bruin (2004) |
(2, 4, 6), (3, 3, 4), (3, 3, 5) | |
(2, 4, 7) | Ghioca |
, | Darmon-Merel |
Bennett | |
Bennett-Skinner |
It is not known if the analogous conjecture for , , and Gaussian integers holds. Known solutions include
(13) |
|||
(14) |
(E. Pegg Jr., pers. comm., March 30, 2002).
REFERENCES:
Bruin, N. "Visualising Sha[2] in Abelian Surfaces." Math. Comput. 73, 1459--1476, 2004.
Darmon, H. and Granville, A. "On the Equations and ." Bull. London Math. Soc. 27, 513-543, 1995.
Darmon, H. and Merel, L. "Winding Quotients and Some Variants of Fermat's Last Theorem." J. reine angew. Math. 490, 81-100, 1997.
Elkies, N. "The ABCs of Number Theory." Harvard Math. Rev. 1, 64-76, 2007.
Mauldin, R. D. "A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem." Not. Amer. Math. Soc. 44, 1436-1437, 1997.
Poonen, B.; Schaefer, E. F.; and Stoll, M. "Twists of and Primitive Solutions to ." 10 Aug 2005. https://arxiv.org/abs/math/0508174.
|
|
5 علامات تحذيرية قد تدل على "مشكل خطير" في الكبد
|
|
|
|
|
لحماية التراث الوطني.. العتبة العباسية تعلن عن ترميم أكثر من 200 وثيقة خلال عام 2024
|
|
|