Read More
Date: 20-12-2020
886
Date: 8-12-2020
827
Date: 12-11-2019
781
|
Given two randomly chosen integer matrices, what is the probability that the corresponding determinants are relatively prime? Hafner et al. (1993) showed that
(1) |
where is the th prime.
The case is just the probability that two random integers are relatively prime,
(2) |
(OEIS A059956). No analytic results are known for . Approximate values for the first few are given by
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
Vardi (1991) computed the limit
(7) |
(A085849). The speed of convergence is roughly (Flajolet and Vardi 1996).
REFERENCES:
Finch, S. R. "Hafner-Sarnak-McCurley Constant." §2.5 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 110-112, 2003.
Flajolet, P. and Vardi, I. "Zeta Function Expansions of Classical Constants." Unpublished manuscript. 1996. http://algo.inria.fr/flajolet/Publications/landau.ps.
Hafner, J. L.; Sarnak, P.; and McCurley, K. "Relatively Prime Values of Polynomials." In A Tribute to Emil Grosswald: Number Theory and Related Analysis (Ed. M. Knopp and M. Seingorn). Providence, RI: Amer. Math. Soc., 1993.
Sloane, N. J. A. Sequences A059956 and A085849 in "The On-Line Encyclopedia of Integer Sequences."
Vardi, I. Computational Recreations in Mathematica. Redwood City, CA: Addison-Wesley, 1991.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|