Read More
Date: 29-11-2019
![]()
Date: 20-9-2020
![]()
Date: 17-12-2020
![]() |
The modular group Gamma is the set of all transformations of the form
![]() |
where ,
,
, and
are integers and
.
A -modular function is then defined (Borwein and Borwein 1987, p. 114) as a function
that satisfies:
1. is meromorphic in the upper half-plane
.
2. for all
, where
.
3. tends to a limit (possibly infinite in the sense that
) as
tends to the vertices of the fundamental region
where the approach is from within the fundamental region
. (In the case
, convergence is uniform in
as
.) The vertices of the fundamental region are
,
and
. Since
is meromorphic in
, this condition is automatically satisfied at
and
and need be checked only at
.
REFERENCES:
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|