Read More
Date: 22-5-2019
![]()
Date: 9-10-2019
![]()
Date: 23-8-2019
![]() |
Euler's continued fraction is the name given by Borwein et al. (2004, p. 30) to Euler's formula for the inverse tangent,
![]() |
An even more famous continued fraction related to Euler which is perhaps a more appropriate recipient of the appellation "Euler's continued fraction" is the simple continued fraction for e, namely
![]() |
REFERENCES:
Borwein, J.; Bailey, D.; and Girgensohn, R. "Euler's Continued Fraction." §1.8.2 in Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, p. 30, 2004.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|