المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
القيمة الغذائية للثوم Garlic
2024-11-20
العيوب الفسيولوجية التي تصيب الثوم
2024-11-20
التربة المناسبة لزراعة الثوم
2024-11-20
البنجر (الشوندر) Garden Beet (من الزراعة الى الحصاد)
2024-11-20
الصحافة العسكرية ووظائفها
2024-11-19
الصحافة العسكرية
2024-11-19

ظواهر التلوث البيئي- تأثيرات غازات الدفيئة (غازات الصوبة الخضراء)- بخار الماء
18/12/2022
تشتية النحل
30-3-2017
موطن الجنس السامي الأول وهل هو بلاد العرب.
2023-12-09
إيتالون "فابري" و"بيرو" Fabry-Perot etalon
14-3-2019
علامات بدء القيامة
16-12-2015
Riboviruses
13-12-2019

Euler,s Continued Fraction  
  
1461   01:39 صباحاً   date: 9-10-2019
Author : Borwein, J.; Bailey, D.; and Girgensohn, R.
Book or Source : "Euler,s Continued Fraction." §1.8.2 in Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters
Page and Part : p. 30


Read More
Date: 14-8-2019 1213
Date: 24-6-2019 1245
Date: 13-9-2019 3049

Euler's Continued Fraction

 

Euler's continued fraction is the name given by Borwein et al. (2004, p. 30) to Euler's formula for the inverse tangent,

 tan^(-1)x=x/(1+(x^2)/(3-x^2+(9x^2)/(5-3x^2+(25x^2)/(7-5x^2+...)))).

An even more famous continued fraction related to Euler which is perhaps a more appropriate recipient of the appellation "Euler's continued fraction" is the simple continued fraction for e, namely

 e=[2;1,2,1,1,4,1,1,6,1,...].

REFERENCES:

Borwein, J.; Bailey, D.; and Girgensohn, R. "Euler's Continued Fraction." §1.8.2 in Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, p. 30, 2004.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.