Read More
Date: 30-3-2019
![]()
Date: 21-9-2018
![]()
Date: 25-4-2019
![]() |
The Lucas polynomials are the -polynomials obtained by setting
and
in the Lucas polynomial sequence. It is given explicitly by
![]() |
(1) |
The first few are
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
(OEIS A114525).
The Lucas polynomial is implemented in the Wolfram Language as LucasL[n, x].
The Lucas polynomial has generating function
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
The derivative of is given by
![]() |
(10) |
The Lucas polynomials have the divisibility property that divides
iff
is an odd multiple of
. For prime
,
is an irreducible polynomial. The zeros of
are
for
, ...,
. For prime
, except for the root of 0, these roots are
times the imaginary part of the roots of the
th cyclotomic polynomial (Koshy 2001, p. 464).
The corresponding polynomials are called Fibonacci polynomials. The Lucas polynomials satisfy
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
where the s are Lucas numbers.
REFERENCES:
Koshy, T. Fibonacci and Lucas Numbers with Applications. New York: Wiley, 2001.
Sloane, N. J. A. Sequence A114525 in "The On-Line Encyclopedia of Integer Sequences."
|
|
منها نحت القوام.. ازدياد إقبال الرجال على عمليات التجميل
|
|
|
|
|
دراسة: الذكاء الاصطناعي يتفوق على البشر في مراقبة القلب
|
|
|
|
|
هيئة الصحة والتعليم الطبي في العتبة الحسينية تحقق تقدما بارزا في تدريب الكوادر الطبية في العراق
|
|
|