Read More
Date: 30-7-2019
1498
Date: 18-8-2018
2687
Date: 16-5-2018
1867
|
The function is defined by the integral
(1) |
and is given by the Wolfram Language function ExpIntegralE[n, x]. Defining so that ,
(2) |
For integer ,
(3) |
Plots in the complex plane are shown above for .
The special case gives
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
where is the exponential integral and is an incomplete gamma function. It is also equal to
(8) |
where is the Euler-Mascheroni constant.
(9) |
|||
(10) |
where and are the cosine integral and sine integral.
The function satisfies the recurrence relations
(11) |
|||
(12) |
In general, can be built up from the recurrence
(13) |
The series expansions is given by
(14) |
and the asymptotic expansion by
(15) |
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Exponential Integral and Related Functions." Ch. 5 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 227-233, 1972.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Exponential Integrals." §6.3 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 215-219, 1992.
Spanier, J. and Oldham, K. B. "The Exponential Integral Ei() and Related Functions." Ch. 37 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 351-360, 1987.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|