المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الكيمياء
عدد المواضيع في هذا القسم 11123 موضوعاً
علم الكيمياء
الكيمياء التحليلية
الكيمياء الحياتية
الكيمياء العضوية
الكيمياء الفيزيائية
الكيمياء اللاعضوية
مواضيع اخرى في الكيمياء
الكيمياء الصناعية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
مدى الرؤية Visibility
2024-11-28
Stratification
2024-11-28
استخدامات الطاقة الشمسية Uses of Solar Radiation
2024-11-28
Integration of phonology and morphology
2024-11-28
تاريخ التنبؤ الجوي
2024-11-28
كمية الطاقة الشمسية الواصلة للأرض Solar Constant
2024-11-28

العوامل الرئيسية التي يتوقف عليها المناخ- توزيع اليابس والماء
14-6-2019
الإصباح في الشام
1-11-2017
الشهادة والشهود
5-4-2019
ميول الشاب إلى المكارم
2023-05-08
شروط الوكيل بالخصومة في الفقه الإسلامي
23-6-2016
ابن كيسان الأصمّ
14-11-2014

Some Chiral Organic Molecules  
  
2275   06:45 مساءً   date: 8-7-2019
Author : ..................
Book or Source : LibreTexts Project
Page and Part : .................


Read More
Date: 8-9-2020 1696
Date: 15-12-2016 1413
Date: 22-9-2020 1001

Some Chiral Organic Molecules

There are a number of important biomolecules that could occur as enantiomers, including amino acids and sugars. In most cases, only one enantiomer occurs (although some fungi, for example, are able to produce mirror-image forms of these compounds). We will look later at some of these biomolecules, but first we will look at a compound that occurs naturally in both enantiomeric forms.

Carvone is a secondary metabolite. That means it is a naturally-occurring compound that is not directly connected to the very basic functions of a cell, such as self-replication or the production of energy. The role of secondary metabolites in nature is often difficult to determine. However, these compounds often play roles in self-defense, acting as deterrents against competitor species in a sort of small-scale chemical warfare scenario. They are also frequently used in communications; this role has been studied most extensively among insects, which use lots of compounds to send information to each other.

 

Figure 1.1: The two naturally-occurring enantiomers of carvone.

Carvone is produced in two enantiomeric forms. One of these forms, called (-)-carvone, is found in mint leaves, and it is a principal contributor to the distinctive odor of mint. The other form, (+)-carvone, is found in caraway seeds. This form has a very different smell, and is typically used to flavor rye bread and other Eastern European foods.

Note that (+)-carvone is the same thing as (S)-carvone. The (+) designation is based on its positive optical rotation value, which is experimentally measured. The (S) designation is determined by the Cahn-Ingold-Prelog rules for designating stereochemistry, which deal with looking at the groups attached to a chiral center and assigning priority based on atomic number. However, carvone's chiral center actually has three carbons attached to it; they all have the same atomic number. We need a new rule to break the tie.

  • If two substituent groups have the same atomic number, go one bond further to the next atom.
  • If there is a difference among the second tier of atoms, stop.
  • The group in which you have encountered a higher atomic number gets the highest priority.
  • If there is not a clear difference, proceed one additional bond to the next set of atoms, and so on, until you find a difference.

In carvone, this decision tree works as follows:

  • The chiral center is connected to a H, a C, a C and a C.
  • The H is lowest priority.
  • One C eventually leads to a C=O. However, at the second bond from the chiral center, this C is connected to a C and two H's.
  • A second C is also part of the six-membered ring, but the C=O is farther away in this direction. At the second bond from the chiral center, this C is connected to a C and two H's, just like the first one.
  • The third C is part of a little three-carbon group attached to the six-membered ring. At the second bond from the chiral center, it is connected to only one H and has two bonds to another C (this is counted as two bonds to C and one to H).
  • Those first two carbon groups are identical so far.
  • However, the third group is different; it has an extra bond to C, whereas the others have an extra bond to H. C has a higher atomic number than H, so this group has higher priority.
  • The second-highest priority is the branch that reaches the oxygen at the third bond from the chiral center.

 

Figure 1.2: Comparing atoms step-by-step to assign configuration.

How different, exactly, are these two compounds, (+)- and (-)-carvone? Are they completely different isomers, with different physical properties? In most ways, the answer is no. These two compounds have the same appearance (colorless oil), the same boiling point (230 °C), the same refractive index (1.499) and specific gravity (0.965). However, they have optical rotations that are almost exactly opposite values.

  • Two enantiomers have the same physical properties.
  • Enantiomers have opposite optical rotations.

Clearly they have different biological properties; since they have slightly different odors, they must fit into slightly different nasal receptors, signaling to the brain whether the person next to you is chewing a stick of gum or a piece of rye bread. This different shape complimentarity is not surprising, just as it isn't surprising that a left hand only fits into a left handed baseball glove and not into a right handed one.

 

Figure 1.3: Thalidomide.

There are other reasons that we might concern ourselves with an understanding of enantiomers, apart from dietary and olfactory preferences. Perhaps the most dramatic example of the importance of enantiomers can be found in the case of thalidomide. Thalidomide was a drug commonly prescribed during the 1950's and 1960's in order to alleviate nausea and other symptoms of morning sickness. In fact, only one enantiomer of thalidomide had any therapeutic effect in this regard. The other enantiomer, apart from being therapeutically useless in this application, was subsequently found to be a teratogen, meaning it produces pronounced birth defects. This was obviously not a good thing to prescribe to pregnant women. Workers in the pharmaceutical industry are now much more aware of these kinds of consequences, although of course not all problems with drugs go undetected even through the extensive clinical trials required in the United States. Since the era of thalidomide, however, a tremendous amount of research in the field of synthetic organic chemistry has been devoted to methods of producing only one enantiomer of a useful compound and not the other. This effort probably represents the single biggest aim of synthetic organic chemistry through the last quarter century.

  • Enantiomers may have very different biological properties.
  • Obtaining enantiomerically pure compounds is very important in medicine and the pharmaceutical industry.



هي أحد فروع علم الكيمياء. ويدرس بنية وخواص وتفاعلات المركبات والمواد العضوية، أي المواد التي تحتوي على عناصر الكربون والهيدروجين والاوكسجين والنتروجين واحيانا الكبريت (كل ما يحتويه تركيب جسم الكائن الحي مثلا البروتين يحوي تلك العناصر). وكذلك دراسة البنية تتضمن استخدام المطيافية (مثل رنين مغناطيسي نووي) ومطيافية الكتلة والطرق الفيزيائية والكيميائية الأخرى لتحديد التركيب الكيميائي والصيغة الكيميائية للمركبات العضوية. إلى عناصر أخرى و تشمل:- كيمياء عضوية فلزية و كيمياء عضوية لا فلزية.


إن هذا العلم متشعب و متفرع و له علاقة بعلوم أخرى كثيرة ويعرف بكيمياء الكائنات الحية على اختلاف أنواعها عن طريق دراسة المكونات الخلوية لهذه الكائنات من حيث التراكيب الكيميائية لهذه المكونات ومناطق تواجدها ووظائفها الحيوية فضلا عن دراسة التفاعلات الحيوية المختلفة التي تحدث داخل هذه الخلايا الحية من حيث البناء والتخليق، أو من حيث الهدم وإنتاج الطاقة .


علم يقوم على دراسة خواص وبناء مختلف المواد والجسيمات التي تتكون منها هذه المواد وذلك تبعا لتركيبها وبنائها الكيميائيين وللظروف التي توجد فيها وعلى دراسة التفاعلات الكيميائية والاشكال الأخرى من التأثير المتبادل بين المواد تبعا لتركيبها الكيميائي وبنائها ، وللظروف الفيزيائية التي تحدث فيها هذه التفاعلات. يعود نشوء الكيمياء الفيزيائية إلى منتصف القرن الثامن عشر . فقد أدت المعلومات التي تجمعت حتى تلك الفترة في فرعي الفيزياء والكيمياء إلى فصل الكيمياء الفيزيائية كمادة علمية مستقلة ، كما ساعدت على تطورها فيما بعد .