Read More
Date: 15-6-2019
2724
Date: 28-8-2018
1388
Date: 12-8-2018
1598
|
The Dedekind eta function is defined over the upper half-plane by
(1) |
|||
(2) |
|||
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
(OEIS A010815), where is the square of the nome , is the half-period ratio, and is a q-series (Weber 1902, pp. 85 and 112; Atkin and Morain 1993; Berndt 1994, p. 139).
The Dedekind eta function is implemented in the Wolfram Language as DedekindEta[tau].
Rewriting the definition in terms of explicitly in terms of the half-period ratio gives the product
(7) |
It is illustrated above in the complex plane.
is a modular form first introduced by Dedekind in 1877, and is related to the modular discriminant of the Weierstrass elliptic function by
(8) |
(Apostol 1997, p. 47).
A compact closed form for the derivative is given by
(9) |
where is the Weierstrass zeta function and and are the invariants corresponding to the half-periods . The derivative of satisfies
(10) |
where is an Eisenstein series, and
(11) |
A special value is given by
(12) |
|||
(13) |
(OEIS A091343), where is the gamma function. Another special case is
(14) |
|||
(15) |
|||
(16) |
where is the plastic constant, denotes a polynomial root, and .
Letting be a root of unity, satisfies
(17) |
|||
(18) |
|||
(19) |
where is an integer (Weber 1902, p. 113; Atkin and Morain 1993; Apostol 1997, p. 47). The Dedekind eta function is related to the Jacobi theta function by
(20) |
(Weber 1902, Vol. 3, p. 112) and
(21) |
(Apostol 1997, p. 91).
Macdonald (1972) has related most expansions of the form to affine root systems. Exceptions not included in Macdonald's treatment include , found by Hecke and Rogers, , found by Ramanujan, and , found by Atkin (Leininger and Milne 1999). Using the Dedekind eta function, the Jacobi triple product identity
(22) |
can be written
(23) |
(Jacobi 1829, Hardy and Wright 1979, Hirschhorn 1999, Leininger and Milne 1999).
Dedekind's functional equation states that if , where is the modular group Gamma, , and (where is the upper half-plane), then
(24) |
where
(25) |
and
(26) |
is a Dedekind sum (Apostol 1997, pp. 52-57), with the floor function.
REFERENCES:
Apostol, T. M. "The Dedekind Eta Function." Ch. 3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 47-73, 1997.
Atkin, A. O. L. and Morain, F. "Elliptic Curves and Primality Proving." Math. Comput. 61, 29-68, 1993.
Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1994.
Bhargava, S. and Somashekara, D. "Some Eta-Function Identities Deducible from Ramanujan's Summation." J. Math. Anal. Appl. 176, 554-560, 1993.
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.
Hirschhorn, M. D. "Another Short Proof of Ramanujan's Mod 5 Partition Congruences, and More." Amer. Math. Monthly 106, 580-583, 1999.
Jacobi, C. G. J. Fundamenta Nova Theoriae Functionum Ellipticarum. Königsberg, Germany: Regiomonti, Sumtibus fratrum Borntraeger, p. 90, 1829.
Leininger, V. E. and Milne, S. C. "Expansions for and Basic Hypergeometric Series in ." Discr. Math. 204, 281-317, 1999a.
Leininger, V. E. and Milne, S. C. "Some New Infinite Families of -Function Identities." Methods Appl. Anal. 6, 225-248, 1999b.
Köhler, G. "Some Eta-Identities Arising from Theta Series." Math. Scand. 66, 147-154, 1990.
Macdonald, I. G. "Affine Root Systems and Dedekind's -Function." Invent. Math. 15, 91-143, 1972.
Ramanujan, S. "On Certain Arithmetical Functions." Trans. Cambridge Philos. Soc. 22, 159-184, 1916.
Siegel, C. L. "A Simple Proof of ." Mathematika 1, 4, 1954.
Sloane, N. J. A. Sequences A010815, A091343, and A116397 in "The On-Line Encyclopedia of Integer Sequences."
Weber, H. Lehrbuch der Algebra, Vols. I-III. 1902. Reprinted as Lehrbuch der Algebra, Vols. I-III, 3rd rev ed. New York: Chelsea, 1979.
|
|
دراسة يابانية لتقليل مخاطر أمراض المواليد منخفضي الوزن
|
|
|
|
|
اكتشاف أكبر مرجان في العالم قبالة سواحل جزر سليمان
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|