Read More
Date: 18-10-2018
4058
Date: 25-11-2018
1329
Date: 14-10-2018
1084
|
If a function analytic at the origin has no singularities other than poles for finite , and if we can choose a sequence of contours about tending to infinity such that never exceeds a given quantity on any of these contours and is uniformly bounded on them, then
where is the sum of the principal parts of at all poles within . If there is a pole at , then we can replace by the negative powers and the constant term in the Laurent series of about .
REFERENCES:
Jeffreys, H. and Jeffreys, B. S. "Mittag-Leffler's Theorem." §12.006 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 383-386, 1988.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
ندوات وأنشطة قرآنية مختلفة يقيمها المجمَع العلمي في محافظتي النجف وكربلاء
|
|
|