المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
{ان أولى الناس بإبراهيم للذين اتبعوه}
2024-10-31
{ما كان إبراهيم يهوديا ولا نصرانيا}
2024-10-31
أكان إبراهيم يهوديا او نصرانيا
2024-10-31
{ قل يا اهل الكتاب تعالوا الى كلمة سواء بيننا وبينكم الا نعبد الا الله}
2024-10-31
المباهلة
2024-10-31
التضاريس في الوطن العربي
2024-10-31

طريقة اختبار الكحول والهستامين المختلطة
24-8-2020
الوضع السياسي في العراق في القرن الحادي عشر قبل الميلاد
10-9-2020
MOLECULES
6-12-2020
العدوى
20-1-2018
تفسير الآية (66-80) من سورة الزخرف
29-5-2020
مـحددات تـطور حجـم النـفقات العـامة
5-6-2022

Pi Formulas  
  
2510   01:47 مساءً   date: 25-8-2018
Author : Adamchik, V. and Wagon, S
Book or Source : "A Simple Formula for pi." Amer. Math. Monthly 104
Page and Part : ...


Read More
Date: 1-9-2019 2204
Date: 20-8-2018 2517
Date: 30-3-2019 1641

Pi Formulas

 

There are many formulas of pi of many types. Among others, these include series, products, geometric constructions, limits, special values, and pi iterations.

pi is intimately related to the properties of circles and spheres. For a circle of radius r, the circumference and area are given by

C = 2pir

(1)

A = pir^2.

(2)

Similarly, for a sphere of radius r, the surface area and volume enclosed are

S = 4pir^2

(3)

V = 4/3pir^3.

(4)

An exact formula for pi in terms of the inverse tangents of unit fractions is Machin's formula

 1/4pi=4tan^(-1)(1/5)-tan^(-1)(1/(239)).

(5)

There are three other Machin-like formulas, as well as thousands of other similar formulas having more terms.

GregorySeries

Gregory and Leibniz found

pi/4 = sum_(k=1)^(infty)((-1)^(k+1))/(2k-1)

(6)

= 1-1/3+1/5-...

(7)

(Wells 1986, p. 50), which is known as the Gregory series and may be obtained by plugging x=1 into the Leibniz series for tan^(-1)x. The error after the nth term of this series in the Gregory series is larger than (2n)^(-1) so this sum converges so slowly that 300 terms are not sufficient to calculate pi correctly to two decimal places! However, it can be transformed to

 pi=sum_(k=1)^infty(3^k-1)/(4^k)zeta(k+1),

(8)

where zeta(z) is the Riemann zeta function (Vardi 1991, pp. 157-158; Flajolet and Vardi 1996), so that the error after k terms is  approx (3/4)^k.

An infinite sum series to Abraham Sharp (ca. 1717) is given by

 pi=sum_(k=0)^infty(2(-1)^k3^(1/2-k))/(2k+1)

(9)

(Smith 1953, p. 311). Additional simple series in which pi appears are

1/4pisqrt(2) = sum_(k=1)^(infty)[((-1)^(k+1))/(4k-1)+((-1)^(k+1))/(4k-3)]

(10)

= 1+1/3-1/5-1/7+1/9+1/(11)-...

(11)

1/4(pi-3) = sum_(k=1)^(infty)((-1)^(k+1))/(2k(2k+1)(2k+2))

(12)

= 1/(2·3·4)-1/(4·5·6)+1/(6·7·8)-...

(13)

1/6pi^2 = sum_(k=1)^(infty)1/(k^2)

(14)

= 1+1/4+1/9+1/(16)+1/(25)+...

(15)

1/8pi^2 = sum_(k=1)^(infty)1/((2k-1)^2)

(16)

= 1+1/(3^2)+1/(5^2)+1/(7^2)+...

(17)

(Wells 1986, p. 53).

In 1666, Newton used a geometric construction to derive the formula

pi = 3/4sqrt(3)+24int_0^(1/4)sqrt(x-x^2)dx

(18)

= (3sqrt(3))/4+24(1/(12)-1/(5·2^5)-1/(28·2^7)-1/(72·2^9)-...),

(19)

which he used to compute pi (Wells 1986, p. 50; Borwein et al. 1989; Borwein and Bailey 2003, pp. 105-106). The coefficients can be found from the integral

I(x) = intsqrt(x-x^2)dx

(20)

= 1/4(2x-1)sqrt(x-x^2)-1/8sin^(-1)(1-2x)

(21)

by taking the series expansion of I(x)-I(0) about 0, obtaining

 I(x)=2/3x^(3/2)-1/5x^(5/2)-1/(28)x^(7/2)-1/(72)x^(9/2)-5/(704)x^(11/2)+...

(22)

(OEIS A054387 and A054388). Using Euler's convergence improvement transformation gives

pi/2 = 1/2sum_(n=0)^(infty)((n!)^22^(n+1))/((2n+1)!)=sum_(n=0)^(infty)(n!)/((2n+1)!!)

(23)

= 1+1/3+(1·2)/(3·5)+(1·2·3)/(3·5·7)+...

(24)

= 1+1/3(1+2/5(1+3/7(1+4/9(1+...))))

(25)

(Beeler et al. 1972, Item 120).

This corresponds to plugging x=1/sqrt(2) into the power series for the hypergeometric function _2F_1(a,b;c;x),

 (sin^(-1)x)/(sqrt(1-x^2))=sum_(i=0)^infty((2x)^(2i+1)i!^2)/(2(2i+1)!)=_2F_1(1,1;3/2;x^2)x.

(26)

Despite the convergence improvement, series (◇) converges at only one bit/term. At the cost of a square root, Gosper has noted that x=1/2 gives 2 bits/term,

 1/9sqrt(3)pi=1/2sum_(i=0)^infty((i!)^2)/((2i+1)!),

(27)

and x=sin(pi/10) gives almost 3.39 bits/term,

 pi/(5sqrt(phi+2))=1/2sum_(i=0)^infty((i!)^2)/(phi^(2i+1)(2i+1)!),

(28)

where phi is the golden ratio. Gosper also obtained

 pi=3+1/(60)(8+(2·3)/(7·8·3)(13+(3·5)/(10·11·3)(18+(4·7)/(13·14·3)(23+...)))).

(29)

A spigot algorithm for pi is given by Rabinowitz and Wagon (1995; Borwein and Bailey 2003, pp. 141-142).

More amazingly still, a closed form expression giving a digit-extraction algorithm which produces digits of pi (or pi^2) in base-16 was discovered by Bailey et al. (Bailey et al. 1997, Adamchik and Wagon 1997),

 pi=sum_(n=0)^infty(4/(8n+1)-2/(8n+4)-1/(8n+5)-1/(8n+6))(1/(16))^n.

(30)

This formula, known as the BBP formula, was discovered using the PSLQ algorithm (Ferguson et al. 1999) and is equivalent to

 pi=int_0^1(16y-16)/(y^4-2y^3+4y-4)dy.

(31)

There is a series of BBP-type formulas for pi in powers of (-1)^k, the first few independent formulas of which are

pi = 4sum_(k=0)^(infty)((-1)^k)/(2k+1)

(32)

= 3sum_(k=0)^(infty)(-1)^k[1/(6k+1)+1/(6k+5)]

(33)

= 4sum_(k=0)^(infty)(-1)^k[1/(10k+1)-1/(10k+3)+1/(10k+5)-1/(10k+7)+1/(10k+9)]

(34)

= sum_(k=0)^(infty)(-1)^k[3/(14k+1)-3/(14k+3)+3/(14k+5)+4/(14k+7)+4/(14k+9)-4/(14k+11)+4/(14k+13)]

(35)

= sum_(k=0)^(infty)(-1)^k[2/(18k+1)+3/(18k+3)+2/(18k+5)-2/(18k+7)-2/(18k+11)+2/(18k+13)+3/(18k+15)+2/(18k+17)]

(36)

= sum_(k=0)^(infty)(-1)^k[3/(22k+1)-3/(22k+3)+3/(22k+5)-3/(22k+7)+3/(22k+9)+8/(22k+11)+3/(22k+13)-3/(22k+15)+3/(22k+17)-3/(22k+19)+1/(22k+21)].

(37)

Similarly, there are a series of BBP-type formulas for pi in powers of 2^k, the first few independent formulas of which are

pi = sum_(k=0)^(infty)1/(16^k)[4/(8k+1)-2/(8k+4)-1/(8k+5)-1/(8k+6)]

(38)

= 1/2sum_(k=0)^(infty)1/(16^k)[8/(8k+2)+4/(8k+3)+4/(8k+4)-1/(8k+7)]

(39)

= 1/(16)sum_(k=0)^(infty)1/(256^k)[(64)/(16k+1)-(32)/(16k+4)-(16)/(16k+5)-(16)/(16k+6)+4/(16k+9)-2/(16k+12)-1/(16k+13)-1/(16k+14)]

(40)

= 1/(32)sum_(k=0)^(infty)1/(256^k)[(128)/(16k+2)+(64)/(16k+3)+(64)/(16k+4)-(16)/(16k+7)+8/(16k+10)+4/(16k+11)+4/(16k+12)-1/(16k+15)]

(41)

= 1/(32)sum_(k=0)^(infty)1/(4096^k)[(256)/(24k+2)+(192)/(24k+3)-(256)/(24k+4)-(96)/(24k+6)-(96)/(24k+8)+(16)/(24k+10)-4/(24k+12)-3/(24k+15)-6/(24k+16)-2/(24k+18)-1/(24k+20)]

(42)

= 1/(64)sum_(k=0)^(infty)1/(4096^k)[(256)/(24k+1)+(256)/(24k+2)-(384)/(24k+3)-(256)/(24k+4)-(64)/(24k+5)+(96)/(24k+8)+(64)/(24k+9)+(16)/(24k+10)+8/(24k+12)-4/(24k+13)+6/(24k+15)+6/(24k+16)+1/(24k+17)+1/(24k+18)-1/(24k+20)-1/(24k+21)]

(43)

= 1/(96)sum_(k=0)^(infty)1/(4096^k)[(256)/(24k+2)+(64)/(24k+3)+(128)/(24k+5)+(352)/(24k+6)+(64)/(24k+7)+(288)/(24k+8)+(128)/(24k+9)+(80)/(24k+10)+(20)/(24k+12)-(16)/(24k+14)-1/(24k+15)+6/(24k+16)-2/(24k+17)-1/(24k+19)+1/(24k+20)-2/(24k+21)]

(44)

= 1/(96)sum_(k=0)^(infty)1/(4096^k)[(256)/(24k+1)+(320)/(24k+3)+(256)/(24k+4)-(192)/(24k+5)-(224)/(24k+6)-(64)/(24k+7)-(192)/(24k+8)-(64)/(24k+9)-(64)/(24k+10)-(28)/(24k+12)-4/(24k+13)-5/(24k+15)+3/(24k+17)+1/(24k+18)+1/(24k+19)+1/(24k+21)-1/(24k+22)]

(45)

= 1/(96)sum_(k=0)^(infty)1/(4096^k)[(512)/(24k+1)-(256)/(24k+2)+(64)/(24k+3)-(512)/(24k+4)-(32)/(24k+6)+(64)/(24k+7)+(96)/(24k+8)+(64)/(24k+9)+(48)/(24k+10)-(12)/(24k+12)-8/(24k+13)-(16)/(24k+14)-1/(24k+15)-6/(24k+16)-2/(24k+18)-1/(24k+19)-1/(24k+20)-1/(24k+21)]

(46)

= 1/(4096)sum_(k=0)^(infty)1/(65536^k)[(16384)/(32k+1)-(8192)/(32k+4)-(4096)/(32k+5)-(4096)/(32k+6)+(1024)/(32k+9)-(512)/(32k+12)-(256)/(32k+13)-(256)/(32k+14)+(64)/(32k+17)-(32)/(32k+20)-(16)/(32k+21)-(16)/(32k+22)+4/(32k+25)-2/(32k+28)-1/(32k+29)-1/(32k+30)]

(47)

= 1/(4096)sum_(k=0)^(infty)1/(65536^k)[(32768)/(32k+2)+(16384)/(32k+3)+(16384)/(32k+4)-(4096)/(32k+7)+(2048)/(32k+10)+(1024)/(32k+11)+(1024)/(32k+12)-(256)/(32k+15)+(128)/(32k+18)+(64)/(32k+19)+(64)/(32k+20)-(16)/(32k+23)+8/(32k+26)+4/(32k+27)+4/(32k+28)-1/(32k+31)].

(48)

F. Bellard found the rapidly converging BBP-type formula

 pi=1/(2^6)sum_(n=0)^infty((-1)^n)/(2^(10n))(-(2^5)/(4n+1)-1/(4n+3)+(2^8)/(10n+1)-(2^6)/(10n+3)-(2^2)/(10n+5)-(2^2)/(10n+7)+1/(10n+9)).

(49)

A related integral is

 pi=(22)/7-int_0^1(x^4(1-x)^4)/(1+x^2)dx

(50)

(Dalzell 1944, 1971; Le Lionnais 1983, p. 22; Borwein, Bailey, and Girgensohn 2004, p. 3; Boros and Moll 2004, p. 125; Lucas 2005; Borwein et al. 2007, p. 14). This integral was known by K. Mahler in the mid-1960s and appears in an exam at the University of Sydney in November 1960 (Borwein, Bailey, and Girgensohn, p. 3). Beukers (2000) and Boros and Moll (2004, p. 126) state that it is not clear if these exists a natural choice of rational polynomial whose integral between 0 and 1 produces pi-333/106, where 333/106 is the next convergent. However, an integral exists for the fourth convergent, namely

 pi=(355)/(113)-1/(3164)int_0^1(x^8(1-x)^8(25+816x^2))/(1+x^2)dx.

(51)

(Lucas 2005; Bailey et al. 2007, p. 219). In fact, Lucas (2005) gives a few other such integrals.

Backhouse (1995) used the identity

I_(m,n) = int_0^1(x^m(1-x)^n)/(1+x^2)dx

(52)

= 2^(-(m+n+1))sqrt(pi)Gamma(m+1)Gamma(n+1)×_3F_2(1,(m+1)/2,(m+2)/2;(m+n+2)/2,(m+n+3)/2;-1)

(53)

= a+bpi+cln2

(54)

for positive integer m and n and where ab, and c are rational constant to generate a number of formulas for pi. In particular, if 2m-n=0 (mod 4), then c=0 (Lucas 2005).

A similar formula was subsequently discovered by Ferguson, leading to a two-dimensional lattice of such formulas which can be generated by these two formulas given by

 pi=sum_(k=0)^infty((4+8r)/(8k+1)-(8r)/(8k+2)-(4r)/(8k+3)-(2+8r)/(8k+4)-(1+2r)/(8k+5)-(1+2r)/(8k+6)+r/(8k+7))(1/(16))^k

(55)

for any complex value of r (Adamchik and Wagon), giving the BBP formula as the special case r=0.

PiFormulasWagonIdentity

An even more general identity due to Wagon is given by

 pi+4tan^(-1)z+2ln((1-2z-z^2)/(z^2+1))=sum_(k=0)^infty1/(16^k)[(4(z+1)^(8k+1))/(8k+1)-(2(z+1)^(8k+4))/(8k+4)-((z+1)^(8k+5))/(8k+5)-((z+1)^(8k+6))/(8k+6)]

(56)

(Borwein and Bailey 2003, p. 141), which holds over a region of the complex plane excluding two triangular portions symmetrically placed about the real axis, as illustrated above.

A perhaps even stranger general class of identities is given by

 pi=4sum_(j=1)^n((-1)^(j+1))/(2j-1)+((-1)^n(2n-1)!)/4sum_(k=0)^infty1/(16^k)[8/((8k+1)_(2n))-4/((8k+3)_(2n))-4/((8k+4)_(2n))-2/((8k+5)_(2n))+1/((8k+7)_(2n))+1/((8k+8)_(2n))]

(57)

which holds for any positive integer n, where (x)_n is a Pochhammer symbol (B. Cloitre, pers. comm., Jan. 23, 2005). Even more amazingly, there is a closely analogous formula for the natural logarithm of 2.

Following the discovery of the base-16 digit BBP formula and related formulas, similar formulas in other bases were investigated. Borwein, Bailey, and Girgensohn (2004) have recently shown that pi has no Machin-type BBP arctangent formula that is not binary, although this does not rule out a completely different scheme for digit-extraction algorithms in other bases.

S. Plouffe has devised an algorithm to compute the nth digit of pi in any base in O(n^3(logn)^3) steps.

A slew of additional identities due to Ramanujan, Catalan, and Newton are given by Castellanos (1988ab, pp. 86-88), including several involving sums of Fibonacci numbers. Ramanujan found

 sum_(k=0)^infty((-1)^k(4k+1)[(2k-1)!!]^3)/([(2k)!!]^3)=sum_(k=0)^infty((-1)^k(4k+1)[Gamma(k+1/2)]^3)/(pi^(3/2)[Gamma(k+1)]^3)=2/pi

(58)

(Hardy 1923, 1924, 1999, p. 7).

Plouffe (2006) found the beautiful formula

 pi=72sum_(n=1)^infty1/(n(e^(npi)-1))-96sum_(n=1)^infty1/(n(e^(2npi)-1)) 
 +24sum_(n=1)^infty1/(n(e^(4npi)-1)).

(59)

PiBlatnerProduct

An interesting infinite product formula due to Euler which relates pi and the nth prime p_n is

pi = 2/(product_(n=1)^(infty)[1+(sin(1/2pip_n))/(p_n)])

(60)

= 2/(product_(n=2)^(infty)[1+((-1)^((p_n-1)/2))/(p_n)])

(61)

(Blatner 1997, p. 119), plotted above as a function of the number of terms in the product.

A method similar to Archimedes' can be used to estimate pi by starting with an n-gon and then relating the area of subsequent 2n-gons. Let beta be the angle from the center of one of the polygon's segments,

 beta=1/4(n-3)pi,

(62)

then

 pi=(2sin(2beta))/((n-3)product_(k=0)^(infty)cos(2^(-k)beta))

(63)

(Beckmann 1989, pp. 92-94).

Vieta (1593) was the first to give an exact expression for pi by taking n=4 in the above expression, giving

 cosbeta=sinbeta=1/(sqrt(2))=1/2sqrt(2),

(64)

which leads to an infinite product of nested radicals,

 2/pi=sqrt(1/2)sqrt(1/2+1/2sqrt(1/2))sqrt(1/2+1/2sqrt(1/2+1/2sqrt(1/2)))...

(65)

(Wells 1986, p. 50; Beckmann 1989, p. 95). However, this expression was not rigorously proved to converge until Rudio in 1892.

A related formula is given by

 pi=lim_(n->infty)2^(n+1)sqrt(2-sqrt(2+sqrt(2+sqrt(2+...+sqrt(2))))_()_(n)),

(66)

which can be written

 pi=lim_(n->infty)2^(n+1)pi_n,

(67)

where pi_n is defined using the iteration

 pi_n=sqrt((1/2pi_(n-1))^2+[1-sqrt(1-(1/2pi_(n-1))^2)]^2)

(68)

with pi_0=sqrt(2) (J. Munkhammar, pers. comm., April 27, 2000). The formula

 pi=2lim_(m->infty)sum_(n=1)^msqrt([sqrt(1-((n-1)/m)^2)-sqrt(1-(n/m)^2)]^2+1/(m^2))

(69)

is also closely related.

A pretty formula for pi is given by

 pi=(product_(n=1)^(infty)(1+1/(4n^2-1)))/(sum_(n=1)^(infty)1/(4n^2-1)),

(70)

where the numerator is a form of the Wallis formula for pi/2 and the denominator is a telescoping sum with sum 1/2 since

 1/(4n^2-1)=1/2(1/(2n-1)-1/(2n+1))

(71)

(Sondow 1997).

A particular case of the Wallis formula gives

 pi/2=product_(n=1)^infty[((2n)^2)/((2n-1)(2n+1))]=(2·2)/(1·3)(4·4)/(3·5)(6·6)/(5·7)...

(72)

(Wells 1986, p. 50). This formula can also be written

 lim_(n->infty)(2^(4n))/(n(2n; n)^2)=pilim_(n->infty)(n[Gamma(n)]^2)/([Gamma(1/2+n)]^2)=pi,

(73)

where (n; k) denotes a binomial coefficient and Gamma(x) is the gamma function (Knopp 1990). Euler obtained

 pi=sqrt(6(1+1/(2^2)+1/(3^2)+1/(4^2)+...)),

(74)

which follows from the special value of the Riemann zeta function zeta(2)=pi^2/6. Similar formulas follow from zeta(2n) for all positive integers n.

An infinite sum due to Ramanujan is

 1/pi=sum_(n=0)^infty(2n; n)^3(42n+5)/(2^(12n+4))

(75)

(Borwein et al. 1989; Borwein and Bailey 2003, p. 109; Bailey et al. 2007, p. 44). Further sums are given in Ramanujan (1913-14),

 4/pi=sum_(n=0)^infty((-1)^n(1123+21460n)(2n-1)!!(4n-1)!!)/(882^(2n+1)32^n(n!)^3)

(76)

and

1/pi = sqrt(8)sum_(n=0)^(infty)((1103+26390n)(2n-1)!!(4n-1)!!)/(99^(4n+2)32^n(n!)^3)

(77)

= (sqrt(8))/(9801)sum_(n=0)^(infty)((4n)!(1103+26390n))/((n!)^4396^(4n))

(78)

(Beeler et al. 1972, Item 139; Borwein et al. 1989; Borwein and Bailey 2003, p. 108; Bailey et al. 2007, p. 44). Equation (78) is derived from a modular identity of order 58, although a first derivation was not presented prior to Borwein and Borwein (1987). The above series both give

 pi approx (9801)/(2206sqrt(2))=3.14159273001...

(79)

(Wells 1986, p. 54) as the first approximation and provide, respectively, about 6 and 8 decimal places per term. Such series exist because of the rationality of various modular invariants.

The general form of the series is

 sum_(n=0)^infty[a(t)+nb(t)]((6n)!)/((3n)!(n!)^3)1/([j(t)]^n)=(sqrt(-j(t)))/pi,

(80)

where t is a binary quadratic form discriminant, j(t) is the j-function,

b(t) = sqrt(t[1728-j(t)])

(81)

a(t) = (b(t))/6{1-(E_4(t))/(E_6(t))[E_2(t)-6/(pisqrt(t))]},

(82)

and the E_i are Eisenstein series. A class number p field involves pth degree algebraic integers of the constants A=a(t)B=b(t), and C=c(t). Of all series consisting of only integer terms, the one gives the most numeric digits in the shortest period of time corresponds to the largest class number 1 discriminant of d=-163 and was formulated by the Chudnovsky brothers (1987). The 163 appearing here is the same one appearing in the fact that e^(pisqrt(163)) (the Ramanujan constant) is very nearly an integer. Similarly, the factor 640320^3 comes from the j-function identity for j(1/2(1+isqrt(163))). The series is given by

1/pi = 12sum_(n=0)^(infty)((-1)^n(6n)!(13591409+545140134n))/((n!)^3(3n)!(640320^3)^(n+1/2))

(83)

= (163·8·27·7·11·19·127)/(640320^(3/2))sum_(n=0)^(infty)((13591409)/(163·2·9·7·11·19·127)+n)((6n)!)/((3n)!(n!)^3)((-1)^n)/(640320^(3n))

(84)

(Borwein and Borwein 1993; Beck and Trott; Bailey et al. 2007, p. 44). This series gives 14 digits accurately per term. The same equation in another form was given by the Chudnovsky brothers (1987) and is used by the Wolfram Language to calculate pi (Vardi 1991; Wolfram Research),

 pi=(426880sqrt(10005))/(A[_3F_2(1/6,1/2,5/6;1,1;B)-C_3F_2(7/6,3/2,(11)/6;2,2;B)]),

(85)

where

A = 13591409

(86)

B = -1/(151931373056000)

(87)

C = (30285563)/(1651969144908540723200).

(88)

The best formula for class number 2 (largest discriminant -427) is

 1/pi=12sum_(n=0)^infty((-1)^n(6n)!(A+Bn))/((n!)^3(3n)!C^(n+1/2)),

(89)

where

A = 212175710912sqrt(61)+1657145277365

(90)

B = 13773980892672sqrt(61)+107578229802750

(91)

C = [5280(236674+30303sqrt(61))]^3

(92)

(Borwein and Borwein 1993). This series adds about 25 digits for each additional term. The fastest converging series for class number 3 corresponds to d=-907 and gives 37-38 digits per term. The fastest converging class number 4 series corresponds to d=-1555 and is

 (sqrt(-C^3))/pi=sum_(n=0)^infty((6n)!)/((3n)!(n!)^3)(A+nB)/(C^(3n)),

(93)

where

A = 63365028312971999585426220+28337702140800842046825600sqrt(5)+384sqrt(5)(10891728551171178200467436212395209160385656017+4870929086578810225077338534541688721351255040sqrt(5))^(1/2)

(94)

B = 7849910453496627210289749000+3510586678260932028965606400sqrt(5)+2515968sqrt(3110)(6260208323789001636993322654444020882161+2799650273060444296577206890718825190235sqrt(5))^(1/2)

(95)

C = -214772995063512240-96049403338648032sqrt(5)-1296sqrt(5)(10985234579463550323713318473+4912746253692362754607395912sqrt(5))^(1/2).

(96)

This gives 50 digits per term. Borwein and Borwein (1993) have developed a general algorithm for generating such series for arbitrary class number.

A complete listing of Ramanujan's series for 1/pi found in his second and third notebooks is given by Berndt (1994, pp. 352-354),

4/pi = sum_(n=0)^(infty)((6n+1)(1/2)_n^3)/(4^n(n!)^3)

(97)

(16)/pi = sum_(n=0)^(infty)((42n+5)(1/2)_n^3)/(64^n(n!)^3)

(98)

(32)/pi = sum_(n=0)^(infty)((42sqrt(5)n+5sqrt(5)+30n-1)(1/2)_n^3)/(64^n(n!)^3)((sqrt(5)-1)/2)^(8n)

(99)

(27)/(4pi) = sum_(n=0)^(infty)((15n+2)(1/2)_n(1/3)_n(2/3)_n)/((n!)^3)(2/(27))^n

(100)

(15sqrt(3))/(2pi) = sum_(n=0)^(infty)((33n+4)(1/2)_n(1/3)_n(2/3)_n)/((n!)^3)(4/(125))^n

(101)

(5sqrt(5))/(2pisqrt(3)) = sum_(n=0)^(infty)((11n+1)(1/2)_n(1/6)_n(5/6)_n)/((n!)^3)(4/(125))^n

(102)

(85sqrt(85))/(18pisqrt(3)) = sum_(n=0)^(infty)((133n+8)(1/2)_n(1/6)_n(5/6)_n)/((n!)^3)(4/(85))^(3n)

(103)

4/pi = sum_(n=0)^(infty)((-1)^n(20n+3)(1/2)_n(1/4)_n(3/4)_n)/((n!)^32^(2n+1))

(104)

4/(pisqrt(3)) = sum_(n=0)^(infty)((-1)^n(28n+3)(1/2)_n(1/4)_n(3/4)_n)/((n!)^33^n4^(2n+1))

(105)

4/pi = sum_(n=0)^(infty)((-1)^n(260n+23)(1/2)_n(1/4)_n(3/4)_n)/((n!)^3(18)^(2n+1))

(106)

4/(pisqrt(5)) = sum_(n=0)^(infty)((-1)^n(644n+41)(1/2)_n(1/4)_n(3/4)_n)/((n!)^35^n(72)^(2n+1))

(107)

4/pi = sum_(n=0)^(infty)((-1)^n(21460n+1123)(1/2)_n(1/4)_n(3/4)_n)/((n!)^3(882)^(2n+1))

(108)

(2sqrt(3))/pi = sum_(n=0)^(infty)((8n+1)(1/2)_n(1/4)_n(3/4)_n)/((n!)^39^n)

(109)

1/(2pisqrt(2)) = sum_(n=0)^(infty)((10n+1)(1/2)_n(1/4)_n(3/4)_n)/((n!)^39^(2n+1))

(110)

1/(3pisqrt(3)) = sum_(n=0)^(infty)((40n+3)(1/2)_n(1/4)_n(3/4)_n)/((n!)^3(49)^(2n+1))

(111)

2/(pisqrt(11)) = sum_(n=0)^(infty)((280n+19)(1/2)_n(1/4)_n(3/4)_n)/((n!)^3(99)^(2n+1))

(112)

1/(2pisqrt(2)) = sum_(n=0)^(infty)((26390n+1103)(1/2)_n(1/4)_n(3/4)_n)/((n!)^3(99)^(4n+2)).

(113)

These equations were first proved by Borwein and Borwein (1987a, pp. 177-187). Borwein and Borwein (1987b, 1988, 1993) proved other equations of this type, and Chudnovsky and Chudnovsky (1987) found similar equations for other transcendental constants (Bailey et al. 2007, pp. 44-45).

A complete list of independent known equations of this type is given by

4/pi = sum_(n=0)^(infty)((6n+1)(1/2)_n^3)/(4^n(n!)^3)

(114)

(16)/pi = sum_(n=0)^(infty)((42n+5)(1/2)_n^3)/(64^n(n!)^3)

(115)

(32)/pi = sum_(n=0)^(infty)((42sqrt(5)n+5sqrt(5)+30n-1)(1/2)_n^3)/(64^n(n!)^3)((sqrt(5)-1)/2)^(8n)

(116)

(5^(1/4))/pi = sum_(n=0)^(infty)((540sqrt(5)n-1200n-525+235sqrt(5))(1/2)_n^3(sqrt(5)-2)^(8n))/((n!)^3)

(117)

(12^(1/4))/pi = sum_(n=0)^(infty)((24sqrt(3)n-36n-15+9sqrt(3))(1/2)_n^3(2-sqrt(3))^(4n))/((n!)^3)

(118)

for m=1 with nonalternating signs,

2/pi = sum_(n=0)^(infty)((-1)^n(1/2)_n^3(12sqrt(2)n-12n-5+4sqrt(2))(sqrt(2)-1)^(4n))/((n!)^3)

(119)

2/pi = sum_(n=0)^(infty)((-1)^n(1/2)_n^3(60n-24sqrt(5)n+23-10sqrt(5))(sqrt(5)-2)^(4n))/((n!)^3)

(120)

2/pi = sum_(n=0)^(infty)((-1)^n(1/2)_n^3(420n-168sqrt(6)n+177-72sqrt(6)))/((n!)^3)

(121)

(2sqrt(2))/pi = sum_(n=0)^(infty)((-1)^n(1/2)_n^3(2sqrt(2))^(2n))/((n!)^3)

(122)

for m=1 with alternating signs,

(128)/(pi^2) = sum_(n=0)^(infty)((-1)^n(1/2)_n^5(820n^2+180n+13))/(32^(2n)(n!)^5)

(123)

(32)/(pi^2) = sum_(n=0)^(infty)((-1)^n(1/2)_n^5(20n^2+8n+1))/(2^(2n)(n!)^5)

(124)

for m=2 (Guillera 2002, 2003, 2006),

 (32)/(pi^3)=sum_(n=0)^infty((1/2)_n^7(168n^3+76n^2+14n+1))/(32^(2n)(n!)^5)

(125)

for m=3 (Guillera 2002, 2003, 2006), and no others for m>3 are known (Bailey et al. 2007, pp. 45-48).

Bellard gives the exotic formula

 pi=1/(740025)[sum_(n=1)^infty(3P(n))/((7n; 2n)2^(n-1))-20379280],

(126)

where

 P(n)=-885673181n^5+3125347237n^4-2942969225n^3+1031962795n^2-196882274n+10996648.

(127)

Gasper quotes the result

 pi=(16)/3[lim_(x->infty)x_1F_2(1/2;2,3;-x^2)]^(-1),

(128)

where _1F_2 is a generalized hypergeometric function, and transforms it to

 pi=lim_(x->infty)4x_1F_2(1/2;3/2,3/2;-x^2).

(129)

A fascinating result due to Gosper is given by

 lim_(n->infty)product_(i=n)^(2n)pi/(2tan^(-1)i)=4^(1/pi)=1.554682275....

(130)

pi satisfies the inequality

 (1+1/pi)^(pi+1) approx 3.14097<pi.

(131)

D. Terr (pers. comm.) noted the curious identity

 (3,1,4)=(1,5,9)+(2,6,5) (mod 10)

(132)

involving the first 9 digits of pi.


REFERENCES:

Adamchik, V. and Wagon, S. "A Simple Formula for pi." Amer. Math. Monthly 104, 852-855, 1997.

Adamchik, V. and Wagon, S. "Pi: A 2000-Year Search Changes Direction." http://www-2.cs.cmu.edu/~adamchik/articles/pi.htm.

Backhouse, N. "Note 79.36. Pancake Functions and Approximations to pi." Math. Gaz. 79, 371-374, 1995.

Bailey, D. H. "Numerical Results on the Transcendence of Constants Involving pie, and Euler's Constant." Math. Comput. 50, 275-281, 1988a.

Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, 2007.

Bailey, D. H.; Borwein, P.; and Plouffe, S. "On the Rapid Computation of Various Polylogarithmic Constants." Math. Comput. 66, 903-913, 1997.

Beck, G. and Trott, M. "Calculating Pi: From Antiquity to Moderns Times." http://documents.wolfram.com/mathematica/Demos/Notebooks/CalculatingPi.html.

Beckmann, P. A History of Pi, 3rd ed. New York: Dorset Press, 1989.

Beeler, M. et al. Item 140 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 69, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/pi.html#item140.

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1994.

Beukers, F. "A Rational Approximation to pi." Nieuw Arch. Wisk. 5, 372-379, 2000.

Blatner, D. The Joy of Pi. New York: Walker, 1997.

Boros, G. and Moll, V. Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals. Cambridge, England: Cambridge University Press, 2004.

Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.

Borwein, J.; Bailey, D.; and Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery. Wellesley, MA: A K Peters, 2004.

Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987a.

Borwein, J. M. and Borwein, P. B. "Ramanujan's Rational and Algebraic Series for 1/pi." Indian J. Math. 51, 147-160, 1987b.

Borwein, J. M. and Borwein, P. B. "More Ramanujan-Type Series for 1/pi." In Ramanujan Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987 (Ed. G. E. Andrews, B. C. Berndt, and R. A. Rankin). New York: Academic Press, pp. 359-374, 1988.

Borwein, J. M. and Borwein, P. B. "Class Number Three Ramanujan Type Series for 1/pi." J. Comput. Appl. Math. 46, 281-290, 1993.

Borwein, J. M.; Borwein, P. B.; and Bailey, D. H. "Ramanujan, Modular Equations, and Approximations to Pi, or How to Compute One Billion Digits of Pi." Amer. Math. Monthly 96, 201-219, 1989.

Borwein, J. M.; Borwein, D.; and Galway, W. F. "Finding and Excluding b-ary Machin-Type Individual Digit Formulae." Canad. J. Math. 56, 897-925, 2004.

Castellanos, D. "The Ubiquitous Pi. Part I." Math. Mag. 61, 67-98, 1988a.

Castellanos, D. "The Ubiquitous Pi. Part II." Math. Mag. 61, 148-163, 1988b.

Chudnovsky, D. V. and Chudnovsky, G. V. "Approximations and Complex Multiplication According to Ramanujan." In Ramanujan Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987 (Ed. G. E. Andrews, B. C. Berndt, and R. A. Rankin). Boston, MA: Academic Press, pp. 375-472, 1987.

Dalzell, D. P. "On 22/7." J. London Math. Soc. 19, 133-134, 1944.

Dalzell, D. P. "On 22/7 and 355/113." Eureka 34, 10-13, 1971.

Ferguson, H. R. P.; Bailey, D. H.; and Arno, S. "Analysis of PSLQ, An Integer Relation Finding Algorithm." Math. Comput. 68, 351-369, 1999.

Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, 2003.

Flajolet, P. and Vardi, I. "Zeta Function Expansions of Classical Constants." Unpublished manuscript. 1996. http://algo.inria.fr/flajolet/Publications/landau.ps.

Gasper, G. "Re: confluent pi." math-fun@cs.arizona.edu posting, Aug. 18, 1996.

Gosper, R. W. math-fun@cs.arizona.edu posting, Sept. 1996.

Gosper, R. W. "a product." math-fun@cs.arizona.edu posting, Sept. 27, 1996.

Gourdon, X. and Sebah, P. "Collection of Series for pi." http://numbers.computation.free.fr/Constants/Pi/piSeries.html.

Guillera, J. "Some Binomial Series Obtained by the WZ-Method." Adv. Appl. Math. 29, 599-603, 2002.

Guillera, J. "About a New Kind of Ramanujan-Type Series." Exp. Math. 12, 507-510, 2003.

Guillera, J. "Generators of Some Ramanujan Formulas." Ramanujan J. 11, 41-48, 2006.

Hardy, G. H. "A Chapter from Ramanujan's Note-Book." Proc. Cambridge Philos. Soc. 21, 492-503, 1923.

Hardy, G. H. "Some Formulae of Ramanujan." Proc. London Math. Soc. (Records of Proceedings at Meetings) 22, xii-xiii, 1924.

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 1983.

Lucas, S. K. "Integral Proofs that 355/113>pi." Austral. Math. Soc. Gaz. 32, 263-266, 2005.

MathPages. "Rounding Up to Pi." http://www.mathpages.com/home/kmath001.htm.

Plouffe, S. "Identities Inspired from Ramanujan Notebooks (Part 2)." Apr. 2006. http://www.lacim.uqam.ca/~plouffe/inspired2.pdf.

Rabinowitz, S. and Wagon, S. "A Spigot Algorithm for the Digits of pi." Amer. Math. Monthly 102, 195-203, 1995.

Ramanujan, S. "Modular Equations and Approximations to pi." Quart. J. Pure. Appl. Math. 45, 350-372, 1913-1914.

Sloane, N. J. A. Sequences A054387 and A054388 in "The On-Line Encyclopedia of Integer Sequences."

Smith, D. History of Mathematics, Vol. 2. New York: Dover, 1953.

Sondow, J. "Problem 88." Math Horizons, pp. 32 and 34, Sept. 1997.

Sondow, J. "A Faster Product for pi and a New Integral for ln(pi/2)." Amer. Math. Monthly 112, 729-734, 2005.

Vardi, I. Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, p. 159, 1991.

Vieta, F. Uriorum de rebus mathematicis responsorum. Liber VII. 1593. Reprinted in New York: Georg Olms, pp. 398-400 and 436-446, 1970.

Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, 1986.

Wolfram Research, Inc. "Some Notes On Internal Implementation: Mathematical Constants." http://reference.wolfram.com/language/tutorial/SomeNotesOnInternalImplementation.html.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.