Read More
Date: 12-7-2018
![]()
Date: 24-5-2018
![]()
Date: 22-6-2018
![]() |
![]() |
(1) |
where is a Bessel function of the first kind and
is a gamma function. It can be derived from Sonine's integral. With
, the integral becomes Parseval's integral.
In complex analysis, let be a harmonic function on a neighborhood of the closed disk
, then for any point
in the open disk
,
![]() |
(2) |
In polar coordinates on ,
![]() |
(3) |
where and
is the Poisson kernel. For a circle,
![]() |
(4) |
For a sphere,
![]() |
(5) |
where
![]() |
REFERENCES:
Krantz, S. G. "The Poisson Integral." §7.3.1 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 92-93, 1999.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 373-374, 1953.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|