x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الفيزياء
علماء الفيزياء
الفيزياء الكلاسيكية
الميكانيك
الديناميكا الحرارية
الكهربائية والمغناطيسية
الكهربائية
المغناطيسية
الكهرومغناطيسية
علم البصريات
تاريخ علم البصريات
الضوء
مواضيع عامة في علم البصريات
الصوت
الفيزياء الحديثة
النظرية النسبية
النظرية النسبية الخاصة
النظرية النسبية العامة
مواضيع عامة في النظرية النسبية
ميكانيكا الكم
الفيزياء الذرية
الفيزياء الجزيئية
الفيزياء النووية
مواضيع عامة في الفيزياء النووية
النشاط الاشعاعي
فيزياء الحالة الصلبة
الموصلات
أشباه الموصلات
العوازل
مواضيع عامة في الفيزياء الصلبة
فيزياء الجوامد
الليزر
أنواع الليزر
بعض تطبيقات الليزر
مواضيع عامة في الليزر
علم الفلك
تاريخ وعلماء علم الفلك
الثقوب السوداء
المجموعة الشمسية
الشمس
كوكب عطارد
كوكب الزهرة
كوكب الأرض
كوكب المريخ
كوكب المشتري
كوكب زحل
كوكب أورانوس
كوكب نبتون
كوكب بلوتو
القمر
كواكب ومواضيع اخرى
مواضيع عامة في علم الفلك
النجوم
البلازما
الألكترونيات
خواص المادة
الطاقة البديلة
الطاقة الشمسية
مواضيع عامة في الطاقة البديلة
المد والجزر
فيزياء الجسيمات
الفيزياء والعلوم الأخرى
الفيزياء الكيميائية
الفيزياء الرياضية
الفيزياء الحيوية
الفيزياء العامة
مواضيع عامة في الفيزياء
تجارب فيزيائية
مصطلحات وتعاريف فيزيائية
وحدات القياس الفيزيائية
طرائف الفيزياء
مواضيع اخرى
Order and entropy
المؤلف: Richard Feynman, Robert Leighton and Matthew Sands
المصدر: The Feynman Lectures on Physics
الجزء والصفحة: Volume I, Chapter 46
2024-06-11
663
So we now have to talk about what we mean by disorder and what we mean by order. It is not a question of pleasant order or unpleasant disorder. What is different in our mixed and unmixed cases is the following. Suppose we divide the space into little volume elements. If we have white and black molecules, how many ways could we distribute them among the volume elements so that white is on one side, and black on the other? On the other hand, how many ways could we distribute them with no restriction on which goes where? Clearly, there are many more ways to arrange them in the latter case. We measure “disorder” by the number of ways that the insides can be arranged, so that from the outside it looks the same. The logarithm of that number of ways is the entropy. The number of ways in the separated case is less, so the entropy is less, or the “disorder” is less.
So with the above technical definition of disorder, we can understand the proposition. First, the entropy measures the disorder. Second, the universe always goes from “order” to “disorder,” so entropy always increases. Order is not order in the sense that we like the arrangement, but in the sense that the number of different ways we can hook it up, and still have it look the same from the outside, is relatively restricted. In the case where we reversed our motion picture of the gas mixing, there was not as much disorder as we thought. Every single atom had exactly the correct speed and direction to come out right! The entropy was not high after all, even though it appeared so.
What about the reversibility of the other physical laws? When we talked about the electric field which comes from an accelerating charge, it was said that we must take the retarded field. At a time t and at a distance r from the charge, we take the field due to the acceleration at a time t−r/c, not t+r/c. So it looks, at first, as if the law of electricity is not reversible. Very strangely, however, the laws we used come from a set of equations called Maxwell’s equations, which are, in fact, reversible. Furthermore, it is possible to argue that if we were to use only the advanced field, the field due to the state of affairs at t+r/c, and do it absolutely consistently in a completely enclosed space, everything happens exactly the same way as if we use retarded fields! This apparent irreversibility in electricity, at least in an enclosure, is thus not an irreversibility at all. We have some feeling for that already, because we know that when we have an oscillating charge which generates fields which are bounced from the walls of an enclosure we ultimately get to an equilibrium in which there is no one-sidedness. The retarded field approach is only a convenience in the method of solution.
So far as we know, all the fundamental laws of physics, like Newton’s equations, are reversible. Then where does irreversibility come from? It comes from order going to disorder, but we do not understand this until we know the origin of the order. Why is it that the situations we find ourselves in every day are always out of equilibrium? One possible explanation is the following. Look again at our box of mixed white and black molecules. Now it is possible, if we wait long enough, by sheer, grossly improbable, but possible, accident, that the distribution of molecules gets to be mostly white on one side and mostly black on the other. After that, as times goes on and accidents continue, they get more mixed up again.
Thus one possible explanation of the high degree of order in the present-day world is that it is just a question of luck. Perhaps our universe happened to have had a fluctuation of some kind in the past, in which things got somewhat separated, and now they are running back together again. This kind of theory is not unsymmetrical, because we can ask what the separated gas looks like either a little in the future or a little in the past. In either case, we see a grey smear at the interface, because the molecules are mixing again. No matter which way we run time, the gas mixes. So this theory would say the irreversibility is just one of the accidents of life.
We would like to argue that this is not the case. Suppose we do not look at the whole box at once, but only at a piece of the box. Then, at a certain moment, suppose we discover a certain amount of order. In this little piece, white and black are separate. What should we deduce about the condition in places where we have not yet looked? If we really believe that the order arose from complete disorder by a fluctuation, we must surely take the most likely fluctuation which could produce it, and the most likely condition is not that the rest of it has also become disentangled! Therefore, from the hypothesis that the world is a fluctuation, all of the predictions are that if we look at a part of the world we have never seen before, we will find it mixed up, and not like the piece we just looked at. If our order were due to a fluctuation, we would not expect order anywhere but where we have just noticed it.
Now we assume the separation is because the past of the universe was really ordered. It is not due to a fluctuation, but the whole thing used to be white and black. This theory now predicts that there will be order in other places—the order is not due to a fluctuation, but due to a much higher ordering at the beginning of time. Then we would expect to find order in places where we have not yet looked.
The astronomers, for example, have only looked at some of the stars. Every day they turn their telescopes to other stars, and the new stars are doing the same thing as the other stars. We therefore conclude that the universe is not a fluctuation, and that the order is a memory of conditions when things started. This is not to say that we understand the logic of it. For some reason, the universe at one time had a very low entropy for its energy content, and since then the entropy has increased. So that is the way toward the future. That is the origin of all irreversibility, that is what makes the processes of growth and decay, that makes us remember the past and not the future, remember the things which are closer to that moment in the history of the universe when the order was higher than now, and why we are not able to remember things where the disorder is higher than now, which we call the future. So, as we commented in an earlier chapter, the entire universe is in a glass of wine, if we look at it closely enough. In this case the glass of wine is complex, because there is water and glass and light and everything else.
Another delight of our subject of physics is that even simple and idealized things, like the ratchet and pawl, work only because they are part of the universe. The ratchet and pawl works in only one direction because it has some ultimate contact with the rest of the universe. If the ratchet and pawl were in a box and isolated for some sufficient time, the wheel would be no more likely to go one way than the other. But because we pull up the shades and let the light out, because we cool off on the earth and get heat from the sun, the ratchets and pawls that we make can turn one way. This one-wayness is interrelated with the fact that the ratchet is part of the universe. It is part of the universe not only in the sense that it obeys the physical laws of the universe, but its one-way behavior is tied to the one-way behavior of the entire universe. It cannot be completely understood until the mystery of the beginnings of the history of the universe are reduced still further from speculation to scientific understanding.