x
هدف البحث
بحث في العناوين
بحث في اسماء الكتب
بحث في اسماء المؤلفين
اختر القسم
موافق
تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Graph Product
المؤلف: Harary, F.
المصدر: Graph Theory. Reading, MA: Addison-Wesley, 1994.
الجزء والصفحة: ...
13-4-2022
1861
In general, a graph product of two graphs and is a new graph whose vertex set is and where, for any two vertices and in the product, the adjacency of those two vertices is determined entirely by the adjacency (or equality, or non-adjacency) of and , and that of and . There are cases to be decided (three possibilities for each, with the case where both are equal eliminated) and thus there are different types of graph products that can be defined.
The most commonly used graph products, given by conditions sufficient and necessary for adjacency, are summarized in the following table (Hartnell and Rall 1998). Note that the terminology is not quite standardized, so these products may actually be referred to by different names by different sources (for example, the graph lexicographic product is also known as the graph composition; Harary 1994, p. 21). Many other graph products can be found in Jensen and Toft (1994).
Graph products can be computed using the unsupported and undocumented Wolfram Language function GraphComputation`GraphProduct[G, H, type].
graph product name | symbol | definition |
graph Cartesian product | ( and ) or ( and ) | |
graph categorical product | ( and ) | |
graph lexicographic product | () or ( and ) | |
graph strong product | ( and ) or ( and ) or ( and ) |
Harary, F. Graph Theory. Reading, MA: Addison-Wesley, 1994.
Hartnell, B. and Rall, D. "Domination in Cartesian Products: Vizing's Conjecture." In Domination in Graphs--Advanced Topics (Ed. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater). New York: Dekker, pp. 163-189, 1998.
Imrich, W.; Klavzar, S.; and Rall, D. F. Graphs and their Cartesian Product. Wellesley, MA: A K Peters, 2008.Jensen, T. R. and Toft, B. Graph Coloring Problems. New York: Wiley, 1994.