تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Simple Directed Graph
المؤلف:
Harary, F
المصدر:
"Digraphs." Ch. 16 in Graph Theory. Reading, MA: Addison-Wesley,
الجزء والصفحة:
...
13-3-2022
2020
A simple directed graph is a directed graph having no multiple edges or graph loops (corresponding to a binary adjacency matrix with 0s on the diagonal). The number of simple directed graphs of nodes for
, 2, ... are 1, 3, 16, 218, 9608, ... (OEIS A000273), which is given by NumberOfDirectedGraphs[n] in the Wolfram Language package Combinatorica` . The directed graphs on
nodes can be enumerated as ListGraphs[n, Directed] in the Wolfram Language package Combinatorica` .
A simple directed graph on nodes may have between 0 and
edges. The number of simple directed graphs on
nodes with
edges can be given by NumberOfDirectedGraphs[n, m] in the Wolfram Language package Combinatorica` . The triangles of graphs counts on
nodes (rows) with
edges (columns) is given below (OEIS A052283).
1 | 1 |
2 | 1, 1, 1 |
3 | 1, 1, 4, 4, 4, 1, 1 |
4 | 1, 1, 5, 13, 27, 38, 48, 38, 27, 13, 5, 1, 1 |
A complete graph in which each edge is bidirected is called a complete directed graph. A directed graph having no symmetric pair of directed edges (i.e., no bidirected edges) is called an oriented graph. A complete oriented graph (i.e., a directed graph in which each pair of nodes is joined by a single edge having a unique direction) is called a tournament.
A polynomial
(1) |
that enumerates the number of distinct simple directed graphs with nodes (where
is the number of directed graphs on
nodes with
edges) can be found by application of the Pólya enumeration theorem. This gives the counting polynomial for the number of directed graphs with
points as
(2) |
where is the reduced ordered pair group which acts on the 2-subsets of
{1,2,...,p}" src="https://mathworld.wolfram.com/images/equations/SimpleDirectedGraph/Inline18.svg" style="height:22px; width:95px" />, given by
(3) |
(Harary 1994, p. 186). Here, is the floor function,
is a binomial coefficient, LCM is the least common multiple, GCD is the greatest common divisor, the sum
is over all exponent vectors of the cycle index, and
is the coefficient of the term with exponent vector
in
. The first few cycle indices
are
(4) |
|||
(5) |
|||
(6) |
|||
(7) |
Setting gives the generating functions for the number of directed graphs on
nodes with
edges,
(8) |
|||
(9) |
|||
(10) |
Harary, F. "Digraphs." Ch. 16 in Graph Theory. Reading, MA: Addison-Wesley, pp. 10, 186, and 198-211, 1994.
Sloane, N. J. A. Sequences A000273/M3032 and A052283 in "The On-Line Encyclopedia of Integer Sequences."