Associated Vector Bundle
المؤلف:
المرجع الالكتروني للمعلوماتيه
المصدر:
www.almerja.com
الجزء والصفحة:
...
22-5-2021
2322
Associated Vector Bundle
Given a principal bundle
, with fiber a Lie group
and base manifold
, and a group representation of
, say
, then the associated vector bundle is
 |
(1)
|
In particular, it is the quotient space
where
.
This construction has many uses. For instance, any group representation of the orthogonal group gives rise to a bundle of tensors on a Riemannian manifold as the vector bundle associated to the frame bundle.
For example,
is the frame bundle on
, where
![pi([w_1; w_2; w_3])=w_1,](https://mathworld.wolfram.com/images/equations/AssociatedVectorBundle/NumberedEquation2.gif) |
(2)
|
writing the special orthogonal matrix with rows
. It is a
bundle with the action defined by
![[costheta -sintheta; sintheta costheta]·A=[1 0 0; 0 costheta -sintheta; 0 sintheta costheta]A,](https://mathworld.wolfram.com/images/equations/AssociatedVectorBundle/NumberedEquation3.gif) |
(3)
|
which preserves the map
.
The tangent bundle is the associated vector bundle with the standard group representation of
on
, given by pairs
, with
and
. Two pairs
and
represent the same tangent vector iff there is a
such that
and
.
الاكثر قراءة في التبلوجيا
اخر الاخبار
اخبار العتبة العباسية المقدسة