تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Examples
المؤلف:
An Answer to Hellman,s Question: Does Category Theory Provide a Framework for Mathematical Structuralism
المصدر:
Philosophia Mathematica
الجزء والصفحة:
...
25-4-2018
772
Examples
Almost every known example of a mathematical structure with the appropriate structure-preserving map yields a category.
- The category Set with objects sets and morphisms the usual functions. There are variants here: one can consider partial functions instead, or injective functions or again surjective functions. In each case, the category thus constructed is different
- The category Top with objects topological spaces and morphisms continuous functions. Again, one could restrict morphisms to open continuous functions and obtain a different category.
- The category hoTop with objects topological spaces and morphisms equivalence classes of homotopic functions. This category is not only important in mathematical practice, it is at the core of algebraic topology, but it is also a fundamental example of a category in which morphisms are not structure preserving functions.
- The category Vec with objects vector spaces and morphisms linear maps.
- The category Diff with objects differential manifolds and morphisms smooth maps.
- The categories Pord and PoSet with objects preorders and posets, respectively, and morphisms monotone functions.
- The categories Lat and Bool with objects lattices and Boolean algebras, respectively, and morphisms structure preserving homomorphisms, i.e., (⊤, ⊥, ∧, ∨) homomorphisms.
- The category Heyt with objects Heyting algebras and (⊤, ⊥, ∧, ∨, →) homomorphisms.
- The category Mon with objects monoids and morphisms monoid homomorphisms.
- The category AbGrp with objects abelian groups and morphisms group homomorphisms, i.e. (1, ×, ?) homomorphisms
- The category Grp with objects groups and morphisms group homomorphisms, i.e. (1, ×, ?) homomorphisms
- The category Rings with objects rings (with unit) and morphisms ring homomorphisms, i.e. (0, 1, +, ×) homomorphisms.
- The category Fields with objects fields and morphisms fields homomorphisms, i.e. (0, 1, +, ×) homomorphisms.
- Any deductive system T with objects formulae and morphisms proofs.
These examples nicely illustrates how category theory treats the notion of structure in a uniform manner. Note that a category is characterized by its morphisms, and not by its objects. Thus the category of topological spaces with open maps differs from the category of topological spaces with continuous maps — or, more to the point, the categorical properties of the latter differ from those of the former.
We should underline again the fact that not all categories are made of structured sets with structure-preserving maps. Thus any preordered set is a category. For given two elements p, q of a preordered set, there is a morphism f : p → q if and only if p ≤ q. Hence a preordered set is a category in which there is at most one morphism between any two objects. Any monoid (and thus any group) can be seen as a category: in this case the category has only one object, and its morphisms are the elements of the monoid. Composition of morphisms corresponds to multiplication of monoid elements. That the monoid axioms correspond to the category axioms is easily verified.
Hence the notion of category generalizes those of preorder and monoid. We should also point out that a groupoid has a very simple definition in a categorical context: it is a category in which every morphism is an isomorphism, that is for any morphism f : X → Y, there is a morphism g : Y → X such that f ○ g = idX and g ○ f = idY.
- –––, 2004, “An Answer to Hellman's Question: Does Category Theory Provide a Framework for Mathematical Structuralism”, Philosophia Mathematica, 12: 54–64.
- –––, 2006, Category Theory, Oxford: Clarendon Press.
- –––, 2007, “Relating First-Order Set Theories and Elementary Toposes”, The Bulletin of Symbolic, 13 (3): 340–358.
- –––, 2008, “A Brief Introduction to Algebraic Set Theory”, The Bulletin of Symbolic, 14 (3): 281–298.
- Awodey, S., et al., 2013, Homotopy Type Theory: Univalent Foundations of Mathematics, The Univalent Foundations Program.
- Awodey, S. & Butz, C., 2000, “Topological Completeness for Higher Order Logic”, Journal of Symbolic Logic, 65 (3): 1168–1182.
- Awodey, S. & Reck, E. R., 2002, “Completeness and Categoricity I. Nineteen-Century Axiomatics to Twentieth-Century Metalogic”, History and Philosophy of Logic, 23 (1): 1–30.
- –––, 2002, “Completeness and Categoricity II. Twentieth-Century Metalogic to Twenty-first-Century Semantics”, History and Philosophy of Logic, 23 (2): 77–94.
- Awodey, S. & Warren, M., 2009, “Homotopy theoretic Models of Identity Types”, Mathematical Proceedings of the Cambridge Philosophical Society, 146 (1): 45–55.
- Baez, J., 1997, “An Introduction to n-Categories”, Category Theory and Computer Science, Lecture Notes in Computer Science (Volume 1290), Berlin: Springer-Verlag, 1–33.
- Baez, J. & Dolan, J., 1998a, “Higher-Dimensional Algebra III. n-Categories and the Algebra of Opetopes”, Advances in Mathematics, 135: 145–206.
- –––, 1998b, “Categorification”, Higher Category Theory (Contemporary Mathematics, Volume 230), Ezra Getzler and Mikhail Kapranov (eds.), Providence: AMS, 1–36.
- –––, 2001, “From Finite Sets to Feynman Diagrams”, Mathematics Unlimited – 2001 and Beyond, Berlin: Springer, 29–50.
- Baez, J. & Lauda, A.D., 2011, “A Pre-history of n-Categorical Physics”, Deep Beauty: Understanding the Quantum World Through Mathematical Innovation, H. Halvorson, ed., Cambridge: Cambridge University Press, 13–128.
- Baez, J. & May, P. J., 2010, Towards Higher Category Theory, Berlin: Springer.
- Baez, J. & Stay, M., 2010, “Physics, Topology, Logic and Computation: a Rosetta Stone”, New Structures for Physics (Lecture Notes in Physics 813), B. Coecke (ed.), New York, Springer: 95–172.
- Baianu, I. C., 1987, “Computer Models and Automata Theory in Biology and Medecine”, in Witten, Matthew, Eds. Mathematical Modelling, Vol. 7, 1986, chapter 11, Pergamon Press, Ltd., 1513–1577.
- Bain, J., 2013, “Category-theoretic Structure and Radical Ontic Structural Realism”, Synthese, 190: 1621–1635.
- Barr, M. & Wells, C., 1985, Toposes, Triples and Theories, New York: Springer-Verlag.
- –––, 1999, Category Theory for Computing Science, Montreal: CRM.
- Batanin, M., 1998, “Monoidal Globular Categories as a Natural Environment for the Theory of Weak n-Categories”, Advances in Mathematics, 136: 39–103.
- Bell, J. L., 1981, “Category Theory and the Foundations of Mathematics”, British Journal for the Philosophy of Science, 32: 349–358.
- –––, 1982, “Categories, Toposes and Sets”, Synthese, 51 (3): 293–337.
- –––, 1986, “From Absolute to Local Mathematics”, Synthese, 69 (3): 409–426.
- –––, 1988, “Infinitesimals”, Synthese, 75 (3): 285–315.
- –––, 1988, Toposes and Local Set Theories: An Introduction, Oxford: Oxford University Press.
- –––, 1995, “Infinitesimals and the Continuum”, Mathematical Intelligencer, 17 (2): 55–57.
- –––, 1998, A Primer of Infinitesimal Analysis, Cambridge: Cambridge University Press.
- –––, 2001, “The Continuum in Smooth Infinitesimal Analysis”, Reuniting the Antipodes — Constructive and Nonstandard Views on the Continuum (Synthese Library, Volume 306), Dordrecht: Kluwer, 19–24.
- –––, 2005, “The Development of Categorical Logic”, in Handbook of Philosophical Logic(Volume 12), 2nd ed., D.M. Gabbay, F. Guenthner (eds.), Dordrecht: Springer, pp. 279–362.
الاكثر قراءة في نظرية الفئات
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
